Assessment of the impact of symbiont Ophiostomatales (Fungi) on mountain pine beetle (Coleoptera: Curculionidae) performance on a jack pine (Pinaceae) diet using a novelin vitrorearing method

2015 ◽  
Vol 148 (1) ◽  
pp. 68-82 ◽  
Author(s):  
Colin L. Myrholm ◽  
David W. Langor

AbstractA novel “rearing-tube” method was developed and used to investigate the performance of mountain pine beetle (MPB),Dendroctonus ponderosaeHopkins (Coleoptera: Curculionidae: Scolytinae), with its three main ophiostomatalean fungal symbionts,Grosmannia clavigera(Robinson-Jeffrey and Davidson) Zipfel, de Beer, and Wingfield (Ophiostomataceae),Ophiostoma montium(Rumbold) von Arx (Ophiostomataceae), andLeptographium longiclavatumLee, Kim, and Breuil (Ophiostomataceae). Transparent glass tubes filled with sterile ground jack pine (Pinus banksianaLambert; Pinaceae) phloem and sapwood (9:1 ratio) were used to rear MPB from egg to adult with each fungus under controlled environmental conditions. Mountain pine beetle mortality was higher and development longer in fungus-free controls compared to fungal treatments. Among fungal treatments, insects developed faster, constructed shorter larval galleries, and had fewer supernumerary instars withL. longiclavatum.Insect survival was not affected by fungal treatments. Hyphal extension through the rearing medium was fastest forL. longiclavatum. Phloem nitrogen was reduced significantly by the presence ofL. longiclavatum.Results support the hypothesis that ophiostomatalean symbionts provide benefits to MPB. The rearing-tube method is useful to tease apart confounding interspecific interactions between bark beetles and symbiotic fungus species.

2019 ◽  
Vol 151 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Asha Wijerathna ◽  
Caroline Whitehouse ◽  
Heather Proctor ◽  
Maya Evenden

AbstractMountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), adults fly to disperse before host colonisation. The effect of flight on reproduction was tested by comparing the number and quality of offspring from beetles flown on flight mills to that of unflown control beetles. Beetles reproduced in bolts of their native host, lodgepole pine (Pinus contorta var. latifolia Engelmann (Pinaceae)), or a novel host, jack pine (Pinus banksiana Lambert (Pinaceae)). Bolts infested by control beetles produced more offspring overall than bolts with flown beetles. The effect of pine species on the number of offspring produced per bolt varied by individual tree. Flown adults produced fewer offspring compared to control parents in all bolts in jack pine regardless of the tree, but tree-level variation was visible in lodgepole pine. An interaction between flight treatment and tree host affected beetle body condition. More offspring emerged from jack pine, but higher quality offspring emerged from lodgepole pine. The offspring sex ratio was female-biased regardless of parental flight treatment. This study reveals trade-offs between flight and reproduction in mountain pine beetle as measured at the level of the bolt.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sydne Guevara-Rozo ◽  
Altaf Hussain ◽  
Jonathan A. Cale ◽  
Jennifer G. Klutsch ◽  
Rahmatollah Rajabzadeh ◽  
...  

2019 ◽  
Vol 49 (11) ◽  
pp. 1339-1348 ◽  
Author(s):  
Julian Wittische ◽  
Jasmine K. Janes ◽  
Patrick M.A. James

The current mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins, 1902) outbreak has reached more than 25 million hectares of forests in North America, affecting pine species throughout the region and substantially changing landscapes. However, landscape features that enhance or limit dispersal during the geographic expansion associated with the outbreak are poorly understood. One of the obstacles in evaluating the effects of landscape features on dispersal is the parameterization of resistance surfaces, which are often constructed based on biased expert opinion or by making assumptions in the calculation of ecological distances. In this study, we assessed the impact of four environmental variables on MPB genetic connectivity across western Canada. We optimized resistance surfaces using genetic algorithms and models of maximum likelihood population effects, based on pairwise genetic distances and ecological distances calculated using random-walk commute-time distances. Unlike other methods for the development of resistance surfaces, this approach does not make a priori assumptions about the direction or shape of the relationships between environmental features and their cost to movement. We found highest support for a composite resistance surface including elevation and climate. These results further the understanding of MPB movement during an outbreak. Additionally, we demonstrated how to use our results for management purposes.


2013 ◽  
Vol 91 (4) ◽  
pp. 235-244 ◽  
Author(s):  
A.J. Fleming ◽  
A.A. Lindeman ◽  
A.L. Carroll ◽  
J.E. Yack

Acoustic signaling is widespread in bark beetles (Scolytinae), although little is known about the physical characteristics of signals, how they are transmitted, and how they differ among behavioural contexts. Signals were studied in the male mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) during stress, male–female, and male–male interactions. Sounds are broadband with significant energy in the ultrasound (peaks between 15 and 26 kHz) and low amplitude (55 and 47 dB SPL at 2 and 4 cm, respectively), indicating that signaling functions at close range. Signal trains vary among contexts primarily in the proportions of chirp types. Chirps were categorized as being simple or interrupted, with the former having significantly lower tooth strike rates and shorter chirp durations. Stress chirps are predominantly simple with characteristics resembling other insect disturbance signals. Male–female interactions begin with the male producing predominantly interrupted chirps prior to gallery entrance, followed by simple chirps. Male–male (rivalry) chirps are predominantly simple, with evidence of antiphonal calling. Substrate-borne vibrations were detectable with a laser-doppler vibrometer at short distances (1–3 cm), suggesting that sensory organs could be tuned to either air or substrate-borne vibrations. These results have important implications for future research on the function and reception of acoustic signals in bark beetles.


1985 ◽  
Vol 117 (11) ◽  
pp. 1445-1446 ◽  
Author(s):  
Charles E. Richmond

The mountain pine beetle, Dendroctonus ponderosae Hopkins, is one of the most destructive bark beetles found on pine in western North America (McCambridge et al. 1979), particularly in forests of lodgepole pine, Pinus contorta Douglas var. latifolia (Furniss and Carolin 1977). The treatment registered in the United States for the protection of high-value trees in residential areas and recreational areas is 2% carbaryl applied to the bole of the tree with a hydraulic sprayer. Recently, pine oil, a derivative of paper pulp waste, was found to be an effective non-insecticidal repellent against several species of bark beetles (Nijholt et al. 1981).


2019 ◽  
Vol 39 (7) ◽  
pp. 1121-1135 ◽  
Author(s):  
Jonathan A Cale ◽  
Jennifer G Klutsch ◽  
Christien B Dykstra ◽  
Brosnon Peters ◽  
Nadir Erbilgin

Abstract Phytopathogenic ophiostomatoid fungi are common associates of bark beetles and contribute to beetle-associated mortality of trees. Mountain pine beetle outbreaks in Canada are facilitating novel associations between its vectored fungi (Grosmannia clavigera, Leptographium longiclavatum and Ophiostoma montium) and jack pine. How the induced defense-related metabolite responses of jack and lodgepole pines vary in response to the fungi is unknown. Understanding this variation is important to clarifying pine susceptibility to and the physiological impacts of infection. We used a comparative metabolite profiling approach to investigate the defense-related signaling, carbon utilization/mobilization, and synthesis responses of both pines to the fungi. Both pine species largely exhibited similar metabolite responses to the fungi. The magnitude of pine metabolite responses positively reflected pathogen virulence. Our findings indicate that pines can recognize and metabolomically respond to novel pathogens, likely due to signals common between the novel fungi and fungi coevolved with the pine. Thus, jack pine is likely as susceptible as lodgepole pine to infections by each of the MPB-vectored fungi. Furthermore, the magnitude of the metabolite responses of both pines varied by the eliciting fungal species, with the most virulent pathogen causing the greatest reduction in carbohydrates and the highest accumulation of defensive terpenes.


1992 ◽  
Vol 22 (4) ◽  
pp. 436-441 ◽  
Author(s):  
Patrick J. Shea ◽  
Mark D. McGregor ◽  
Gary E. Daterman

Mountain pine beetle, Dendroctonusponderosae Hopkins, is the primary pest affecting lodgepole pine, Pinuscontorta var. latifolia Engelm., ecosystems in western North America. In 1988, aerial treatments of the antiaggregation pheromone, verbenone, were applied to lodgepole pine stands infested with mountain pine beetle in northwestern Montana. The pheromone was formulated by PHERO TECH Inc. in controlled-release, cylindrical 5 × 5 mm plastic beads and applied without benefit of a sticker at the rate of 54 g verbenone per hectare. There were significantly fewer successfully attacked trees on the treated plots, as evidenced by (i) a fourfold greater incidence of current-year attacked trees per hectare in the untreated check plots and (ii) the significantly lower (α = 0.05) ratio of 1988:1987 attacked trees in the treated plots. Further, the number of trees per hectare resisting attacks (as reflected by number of trees pitching out bark beetles) was higher (α = 0.05) in the treated plots. More pitch outs occurred in treated plots presumably because avoidance of verbenone by beetles reduced the number of beetles below that needed to overcome the natural resistance of attacked trees.


2020 ◽  
Vol 46 (5) ◽  
pp. 333-346
Author(s):  
Joseph Doccola ◽  
Sheri Smith ◽  
Joseph Fischer ◽  
Brian Strom

The protection of high-value trees against bark beetles and the development of alternatives to bole sprays is a priority for the tree manager. The objective of this study was to evaluate stem-injected TREE-äge® (emamectin benzoate [EB]) as a protective treatment for western white pines (Pinus monticola Dougl. ex D. Don) against mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins). Treatment efficacy was based solely on tree mortality as per Shea protocols (i.e., ≥ 60% check vs. ≤ 20% treated tree mortality). Our first experiment was installed in 2007 and included trees stem-injected with TREE-äge and untreated controls. Bole application of S-(-)-verbenone and green leaf volatile (GLV) blend was included for observational comparison. Pressure from MPB was heavy, as indicated by the number and timing of control tree mortality (90%). Strip attacks by MPB in TREE-äge trees indicated that the impacts of EB, and by inference its distribution, were inconsistent. In 2009, the injection protocol was revised to improve EB distribution in the phloem via closer injection points. In the 2009 TREE-äge-treated trees, adult beetle mining stopped when they contacted phloem and was insufficient to cause tree death by girdling. Blue-stain fungi colonized the sapwood of trees in both studies. Isolates from autopsied trees treated with TREE-äge alone were subsequently identified as Grosmannia clavigera and Leptographium longiclavatum (Ophiostomatales: Ascomycota), species that can incite tree mortality. In 2013, we revised our protocol to include GLV plus verbenone or propiconazole with TREE-äge, wherein these treatments proved effective in protecting trees against MPB and their associated pathogenic fungi.


2017 ◽  
Vol 26 (6) ◽  
pp. 478 ◽  
Author(s):  
Maria Sharpe ◽  
Hyejin Hwang ◽  
David Schroeder ◽  
Soung Ryoul Ryu ◽  
Victor J. Lieffers

This study documents cone opening and natural regeneration of jack pine (Pinus banksiana Lamb.) after burning live and dead stands similar to those killed by the mountain pine beetle (Dendroctonus ponderosae). Trees were killed by girdling in May and were burned in late July, 26 months later. Pairs of live and dead plots were simultaneously burned using three types of fire: surface, intermittent crown and continuous crown fires. Each type of fire was replicated three times; the nine pairs of burns were completed in a 4-day period. After fire, more cones were opened on dead trees than live trees. On dead trees, there was cone opening even when fire charred only the lower part of the bole. Three years after burning, dead stands with continuous crown fires had some of the densest regeneration and the highest rates of stocking. Across all burns in this study, seedling regeneration was best in shallow residual duff and in the more intensely burned plots. Without burning, there was virtually no regeneration 5 years after mortality. The results also show that burning, especially under continuous crown fire, could be used to promote regeneration in dead stands.


Sign in / Sign up

Export Citation Format

Share Document