A Study of the Behavior of Oil Spills in the Arctic

1972 ◽  
Author(s):  
J.L. Glaeser ◽  
George P. Vance
Keyword(s):  
Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


Science ◽  
1974 ◽  
Vol 186 (4166) ◽  
pp. 843-845
Author(s):  
R. C. Ayers ◽  
H. O. Jahns ◽  
J. L. Glaeser

Science ◽  
2009 ◽  
Vol 325 (5946) ◽  
pp. 1335-1335 ◽  
Author(s):  
M. Torrice
Keyword(s):  

1993 ◽  
Vol 115 (3) ◽  
pp. 149-153 ◽  
Author(s):  
S. Lo̸set ◽  
G. W. Timco

Combatting oil spills in the Arctic is a major challenge. Drilling or producing oil or gas in the marginal ice zone (MIZ) may allow booms to be deployed upstream of an offshore structure to clear the water of ice, thereby enabling conventional oil spill countermeasures to be used. Such a boom would be kept in place by two ice-going service vessels or by moored buoys. SINTEF NHL and NRC have performed a number of small-scale tests with a flexible boom in the NRC ice basin in Ottawa. The purpose of the tests was to measure the effectiveness of using a flexible boom for collecting ice, and to determine the loads associated with collecting the ice. In the tests, various boom configurations were towed against a broken ice field consisting of ice pieces typically 50–100 mm across and 30 mm thick. The ice concentration was usually 10/10, but it was reduced to 8/10 and 5/10 for two tests. The boom was towed at speeds of 20 and 50 mm-s−1. Both the width of the boom and the slackness of the boom were varied over reasonable ranges. Two six-component dynamometers were used to support the boom. Thus, the force components on each end of the boom were measured. Further, two video cameras were used to record the effectiveness of each boom configuration. In this paper, the full results of this test program are presented and the application of the test results to the full-scale situation are discussed. The tests show that, under certain conditions, the use of boom is feasible for ice management in oil-contaminated water.


ARCTIC ◽  
1987 ◽  
Vol 40 (5) ◽  
Author(s):  
B. Humphrey ◽  
D.R. Green ◽  
B.R. Fowler ◽  
D. Hope ◽  
P.D. Boehm

Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. G1-G12 ◽  
Author(s):  
John H. Bradford ◽  
David F. Dickins ◽  
Per Johan Brandvik

With recent increased interest in oil and gas exploration and development in the Arctic comes increased potential for an accidental hydrocarbon release into the cryosphere, including within and at the base of snow. There is a critical need to develop effective and reliable methods for detecting such spills. Numerical modeling shows that ground-penetrating radar (GPR) is sensitive to the presence of oil in the snow pack over a broad range of snow densities and oil types. Oil spills from the surface drain through the snow by the mechanisms of unsaturated flow and form geometrically complex distributions that are controlled by snow stratigraphy. These complex distributions generate an irregular pattern of radar reflections that can be differentiated from natural snow stratigraphy, but in many cases, interpretation will not be straightforward. Oil located at the base of the snow tends to reduce the impedance contrast with the underlying ice or soil substrate resulting in anomalously low-amplitude radar reflections. Results of a controlled field experiment using a helicopter-borne, [Formula: see text] GPR system showed that a [Formula: see text]-thick oil film trapped between snow and sea ice was detected based on a 51% decrease in reflection strength. This is the first reported test of GPR for the problem of oil detection in and under snow. Results indicate that GPR has the potential to become a robust tool that can substantially improve oil spill characterization and remediation.


Sign in / Sign up

Export Citation Format

Share Document