polar cod
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 43)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
Author(s):  
David Cote ◽  
Cassandra A. Konecny ◽  
Jennica Seiden ◽  
Tristan Hauser ◽  
Trond Kristiansen ◽  
...  

Climate change will alter ecosystems and impose hardships on marine resource users as fish assemblages redistribute to habitats that meet their physiological requirements. Marine gadids represent some of the most ecologically and socio-economically important species in the North Atlantic, but face an uncertain future in the wake of rising ocean temperatures. We applied CMIP5 ocean temperature projections to egg survival and juvenile growth models of three northwest Atlantic coastal species of gadids (Atlantic cod, Polar cod, and Greenland cod), each with different thermal affinities and life histories. We illustrate how physiologically based species distribution models (SDMs) can be used to predict habitat distribution shifts and compare vulnerabilities of species and life stages with changing ocean conditions. We also derived an integrated habitat suitability index from the combined surfaces of each metric to predict areas and periods where thermal conditions were suitable for both life stages. Suitable thermal habitat shifted poleward for the juvenile life stages of all three species, but the area remaining differed across species and life stages through time. Arctic specialists like Polar cod are predicted to experience reductions in suitable juvenile habitat based on metrics of egg survival and growth potential. In contrast, habitat loss in boreal and subarctic species like Atlantic cod and Greenland cod may be dampened due to increases in suitable egg survival habitats as suitable juvenile growth potential habitats decrease. These results emphasize the need for mechanistic SDMs that can account for the combined effects of changing seasonal thermal requirements under varying climate change scenarios.


2021 ◽  
Vol 40 ◽  
Author(s):  
Christian Lydersen ◽  
Kit M. Kovacs

The Norwegian Polar Institute initiated a research programme on white whales in 1995 to gather biological information relevant for the species’ management; the results of which are reviewed herein. Satellite tracking from two periods (1995–2001 and 2013–16), between which sea ice diminished markedly, showed that the whales in waters off the archipelago of Svalbard spent most of their time foraging close to tidewater glaciers. Transits between glaciers typically followed the coastline, with the whales moving rapidly from one glacier to another. During the later period, the whales spent some time out in the fjords, suggesting that they might be targeting prey in the Atlantic Water masses that now prevail in Svalbard’s west-coast fjords. Most of their dives were extremely shallow (13 ± 26 m; maximum 350 m) and of short duration (97 ± 123 s; maximum 31.4 min). Fatty-acid analyses indicated that polar cod (Boreogadus saida) was the main prey during the first sampling period. An aerial survey in 2018 estimated the population numbered 549 (CI: 436–723) animals. Svalbard white whales are genetically separate from populations off west Greenland and in the White Sea. Predation by killer whales appears to have influenced white whale behaviour in Svalbard; they are often silent, despite having a normal vocal repertoire for the species and their coastal movements take place in very shallow water. This population has extremely high contaminant levels. Climate change poses a threat to this small population of white whales.


Polar Biology ◽  
2021 ◽  
Author(s):  
María Quintela ◽  
Shripathi Bhat ◽  
Kim Præbel ◽  
Natalia Gordeeva ◽  
Gaute W. Seljestad ◽  
...  

AbstractThe cold-adapted polar cod Boreogadus saida, a key species in Arctic ecosystems, is vulnerable to global warming and ice retreat. In this study, 1257 individuals sampled in 17 locations within the latitudinal range of 75–81°N from Svalbard to East Siberian Sea were genotyped with a dedicated suite of 116 single-nucleotide polymorphic loci (SNP). The overall pattern of isolation by distance (IBD) found was driven by the two easternmost samples (East Siberian Sea and Laptev Sea), whereas no differentiation was registered in the area between the Kara Sea and Svalbard. Eleven SNP under strong linkage disequilibrium, nine of which could be annotated to chromosome 2 in Atlantic cod, defined two genetic groups of distinct size, with the major cluster containing seven-fold larger number of individuals than the minor. No underlying geographic basis was evident, as both clusters were detected throughout all sampling sites in relatively similar proportions (i.e. individuals in the minor cluster ranging between 4 and 19% on the location basis). Similarly, females and males were also evenly distributed between clusters and age groups. A differentiation was, however, found regarding size at age: individuals belonging to the major cluster were significantly longer in the second year. This study contributes to increasing the population genetic knowledge of this species and suggests that an appropriate management should be ensured to safeguard its diversity.


2021 ◽  
pp. 105434
Author(s):  
Adélaïde Lerebours ◽  
Svetlana Murzina ◽  
You Song ◽  
Knut Erik Tollefsen ◽  
Maura Benedetti ◽  
...  

2021 ◽  
Vol 61 (4) ◽  
pp. 564-575
Author(s):  
L. I. Karamushko ◽  
E. V. Raskhozheva ◽  
O. V. Karamushko

2021 ◽  
Vol 325 (2) ◽  
pp. 248-268
Author(s):  
N.V. Chernova ◽  
V.A. Spiridonov ◽  
V.L. Syomin ◽  
M.V. Gavrilo

Data on the fishes of the high-latitude Severnaya Zemlya archipelago (the North Land) is presented. The archipelago is located in the Arctic on the border between the Kara Sea and the Laptev Sea. The ichthyofauna of the archipelago has not been studied; therefore, even small collections are of interest. Fish samples were obtained during the expedition “Open Ocean: Arctic Archipelagos – 2019: Severnaya Zemlya”. In addition, the samples from this area in the collections of the Zoological Institute (ZIN) were studied, which have been received from polar expeditions to the Kara and Laptev seas during the entire era of polar research. The most significant fact is the discovery of mass accumulation of polar cod Boreogadus saida (Lepechin, 1774) larvae in Mikoyan Bay (Bolshevik Island), which gives evidence of important spawning grounds near Severnaya Zemlya. Indirect evidence of this can be found in the publications of polar explorers who overwintered on Severnaya Zemlya in the 1930s–1950s and have reported that the polar cod approaches the shores for spawning in August, in huge schools. The waters of Severnaya Zemlya represent the spawning area of polar cod in the central part of the Eurasian shelf, which is not mentioned in current literature. In addition to polar cod, a few more species are registered in samples from the coastal waters of the archipelago (depths to 38 m), rough hookear sculpin Artediellus scaber Knipowitsch, 1907, twohorn sculpin Icelus bicornis (Reinhardt, 1840) (family Cottidae), Liparis tunicatus Reinhardt, 1836, black-bellied snailfish L. cf. fabricii (Liparidae), Knipowich eelpout Gymnelus knipowitschi Chernova, 1999 (Zoarcidae) and three-spined stickleback Gasterosteus aculeatus (Linnaeus, 1758) (Gasterosteidae). In the deepwater straits, snailfish Careproctus sp. (174–234 m) and pale eelpout Lycodes pallidus Collett, 1879 (105–348 m) were found. The Arctic charr Salvelinus alpinus (Linnaeus, 1758) (Salmonidae) inhabits some lakes of the archipelago. This is the first finding of a three-spined stickleback in the east of the Kara Sea.


Polar Biology ◽  
2021 ◽  
Author(s):  
Erica Carlig ◽  
Jørgen S. Christiansen ◽  
Davide Di Blasi ◽  
Sara Ferrando ◽  
Eva Pisano ◽  
...  

AbstractThe polar cod (Boreogadus saida) and the Antarctic silverfish (Pleuragramma antarctica) are pelagic fish endemic to the Arctic and Antarctica sea, respectively. Both species are abundant and play a central role as midtrophic wasp-waist species in polar ecosystems. Due to their biological and ecological characteristics (small size, complex life histories, relatively short generation cycles, movement capability, planktivorous diet, and importance as prey), the polar cod and the Antarctic silverfish are potentially good sentinels of ecosystem change. Changes in polar zooplankton communities are well documented. How changes impact ecosystems as a whole largely depend on the degree of diet specialization and feeding flexibility of midtrophic species. Here, we provide the ecomorphological characterization of polar cod and Antarctic silverfish feeding performances. A comparative functional ecology approach, based on the analysis of morpho-anatomical traits, including calculation of suction index and mechanical advantage in jaw closing, was applied to profile the feeding modes and flexibility of the two species. Ecomorphological evidence supports differences in food acquisition: the polar cod appears able to alternate particulate ram-suction feeding to a pump filter feeding, and the Antarctic silverfish results be both a particulate ram and a tow-net filter feeder. Both species exhibit opportunistic feeding strategies and appear able to switch feeding mode according to the abundance and size of the available prey, which is a clue of potential resilience to a changing environment.


Sign in / Sign up

Export Citation Format

Share Document