Numerical Simulation of Methane Hydrate Production from Geologic Formations via Carbon Dioxide Injection

Author(s):  
Mark Daniel White ◽  
Bernard Peter McGrail
2021 ◽  
Author(s):  
Lyudmila Khakimova ◽  
Anna Isaeva ◽  
Vladimir Dobrozhanskiy ◽  
Yury Podladchikov

Abstract We discuss numerical simulation of carbon dioxide injection considered by oil and gas companies. Complex behavior of multicomponent reservoir fluids mixed with carbon dioxide may cause the occurrence of vapor-liquid-liquid equilibria (VLLE), salt precipitation in aquifers, pore-clogging, etc. We propose a simple algorithm for phase equilibria calculations based on the minimization of the multicomponent system free energy. This algorithm can be used to calculate phase separations and component partitioning between the phases under various conditions (critical region, two- and three-phase equilibria, etc.). We demonstrate the applicability of the proposed algorithm in a series of calculations. We consider binary and ternary mixtures that include carbon dioxide and hydrocarbons. We examine the algorithm in two- and three-phase equilibrium calculations and compare its performance with the popular iterative fugacity equilibration technique. We show that both calculation techniques give near-identical results for the considered mixtures. Thus, we show that the free energy minimization algorithm can be used interchangeably with the fugacity equilibration technique for calculating phase equilibria. This algorithm is applicable for VLLE calculations, which is important when considering multicomponent reservoir fluids that include carbon dioxide.


2014 ◽  
Vol 63 ◽  
pp. 7891-7912 ◽  
Author(s):  
M.D. White ◽  
B.J. McPherson ◽  
R.B. Grigg ◽  
W. Ampomah ◽  
M.S. Appold

2019 ◽  
Vol 2 (3) ◽  
pp. 141-151
Author(s):  
O. E. Gnezdova ◽  
E. S. Chugunkova

Introduction: greenhouses need microclimate control systems to grow agricultural crops. The method of carbon dioxide injection, which is currently used by agricultural companies, causes particular problems. Co-generation power plants may boost the greenhouse efficiency, as they are capable of producing electric energy, heat and cold, as well as carbon dioxide designated for greenhouse plants.Methods: the co-authors provide their estimates of the future gas/electricity rates growth in the short term; they have made a breakdown of the costs of greenhouse products, and they have also compiled the diagrams describing electricity consumption in case of traditional and non-traditional patterns of power supply; they also provide a power distribution pattern typical for greenhouse businesses, as well as the structure and the principle of operation of a co-generation unit used by a greenhouse facility.Results and discussion: the co-authors highlight the strengths of co-generation units used by greenhouse facilities. They have also identified the biological features of carbon dioxide generation and consumption, and they have listed the consequences of using carbon dioxide to enrich vegetable crops.Conclusion: the co-authors have formulated the expediency of using co-generation power plants as part of power generation facilities that serve greenhouses.


Sign in / Sign up

Export Citation Format

Share Document