Autonomous Underwater Vehicle Collaborations to Improve Hurricane Forecasting and Environmental Monitoring in the Gulf of Mexico

Author(s):  
Ruth Perry ◽  
Walt McCall ◽  
Pak Tao Leung ◽  
Kevin Martin ◽  
Ryan Vandermeulen ◽  
...  
2020 ◽  
Vol 54 (6) ◽  
pp. 77-83
Author(s):  
David G. Aubrey ◽  
Jennifer Wehof ◽  
Stephen O'Malley ◽  
Rajai Aghabi

AbstractFloating LiDAR systems (FLS) and other moored environmental monitoring systems are used extensively for wind and environmental assessments in offshore wind projects. In addition, wave energy converters (WECs) are being evaluated for more extensive use in coastal and deeper waters, most of which also require anchoring to the seabed. Since these systems must be moored, heavy anchors and typically heavy chain are used to secure the mooring and measurement/WEC buoy to the seabed. Disadvantages of present mooring technology include 1) damage to the seabed and benthic communities in vicinity of the mooring, as chain sweeps over the sea bottom; 2) an unnecessarily large watch circle at the water's surface; 3) slightly increased likelihood of marine mammal entanglement; 4) mooring damage from nearby fishing activity; and 5) likelihood of mooring failure due to self-entanglement within the mooring itself. This study presents an alternative mooring using mechanically compliant, elastomeric hoses to connect the buoyed system to the bottom anchor. Modeling the two mooring types with a typical buoy used in wind resource assessments shows a significant decrease in anchor drag area and surface watch circle with the use of the elastomeric hose versus the traditional chain and polyethylene line mooring. The hose also is equipped with copper conductors and/or fiber-optic conductors, providing power and data transmission between the bottom and the surface. For WEC solutions, the elastomeric hose provides similar benefits as for FLS and environmental monitoring systems, with the added advantage of being able to transmit power to the seafloor for distribution. For one WEC application, we have developed an elastomeric solution containing not only larger copper conductors to enable power transmission but also fiber-optic conductors to permit data transfer from a garage mounted on the bottom (servicing an autonomous underwater vehicle [AUV] or unmanned underwater vehicle [UUV], for instance) to the surface buoy for onward transmission to shore.


2011 ◽  
Vol 28 (4) ◽  
pp. 484-496 ◽  
Author(s):  
Yanwu Zhang ◽  
Robert S. McEwen ◽  
John P. Ryan ◽  
James G. Bellingham ◽  
Hans Thomas ◽  
...  

2015 ◽  
Vol 49 (3) ◽  
pp. 88-101 ◽  
Author(s):  
Mahdi Choyekh ◽  
Naomi Kato ◽  
Timothy Short ◽  
Masahiro Ukita ◽  
Yasuaki Yamaguchi ◽  
...  

Abstract Oil spills caused by accidents from oil tankers and blowouts of oil and gas from offshore platforms cause tremendous damage to the environment as well as to marine and human life. To prevent oil and gas accidentally released from deep water from spreading and causing further damage over time to the environment, early detection and monitoring systems can be deployed to the area where underwater releases of oil and gas first occurred. Monitoring systems can provide a rapid inspection of the area by detecting chemical substances and collecting oceanography data necessary for enhancing the accuracy of simulation of behavior of oil and gas. An autonomous underwater vehicle (AUV) called the Spilled Oil and Gas Tracking Autonomous Buoy system (SOTAB-I) is being developed to perform onsite measurements of oceanographic data as well as dissolved chemical substances using underwater mass spectrometry. The scope of this paper is limited to the surveying abilities of SOTAB-I in shallow water, although it also has functions for surveying in deep water. The experiment results obtained during the early deployments of SOTAB-I in the shallow water of the Gulf of Mexico in the United States are provided. Oceanographic data, such as the water column distribution of temperature, salinity, and density, as well as the dissolution of chemical substances were measured. In addition, a high-resolution water current profile was obtainable near the seabed. <def-list> Nomenclature <def-item> <term>ADCP</term> <def> acoustic Doppler current profiler </def> </def-item> <def-item> <term>AUV</term> <def> autonomous underwater vehicle </def> </def-item> <def-item> <term>BTX</term> <def> benzene-toluene-xylenes </def> </def-item> <def-item> <term>CTD</term> <def> conductivity-temperature-depth </def> </def-item> <def-item> <term>DVL</term> <def> Doppler velocity logger </def> </def-item> <def-item> <term>GPS</term> <def> global positioning system </def> </def-item> <def-item> <term>MIMS</term> <def> membrane introduction mass spectrometry </def> </def-item> <def-item> <term>PID</term> <def> proportional-integral-derivative </def> </def-item> <def-item> <term>PSU</term> <def> practical salinity units </def> </def-item> <def-item> <term>RMSE</term> <def> root mean square error </def> </def-item> <def-item> <term>UMS</term> <def> underwater mass spectrometer </def> </def-item> <def-item> <term>USBL</term> <def> ultra-short base line </def> </def-item> <def-item> <term>VOC</term> <def> volatile organic compound </def> </def-item> <def-item> <term>VRU</term> <def> vertical reference unit </def> </def-item> </def-list>


2009 ◽  
Author(s):  
Giacomo Marani ◽  
Junku Yuh ◽  
Song K. Choi ◽  
Son-Cheol Yu ◽  
Luca Gambella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document