Numerical Simulations of Ice Loads on Fixed and Floating Offshore Structures using the Discrete Element Method

Author(s):  
Jiancheng Jessie Liu ◽  
Xiang Liu ◽  
Yingying Chen ◽  
Xue Long ◽  
Shunying Ji
Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4329
Author(s):  
Xin Tan ◽  
Zhengbo Hu ◽  
Wengui Li ◽  
Suhua Zhou ◽  
Tenglong Li

This paper investigates the failure processes of recycled aggregate concrete by a model test and numerical simulations. A micromechanical numerical modeling approach to simulate the progressive cracking behavior of the modeled recycled aggregate concrete, considering its actual meso-structures, is established based on the discrete element method (DEM). The determination procedure of contact microparameters is analyzed, and a series of microscopic contact parameters for different components of modeled recycled aggregate concrete (MRAC) is calibrated using nanoindentation test results. The complete stress–strain curves, cracking process, and failure pattern of the numerical model are verified by the experimental results, proving their accuracy and validation. The initiation, growth, interaction, coalescence of microcracks, and subsequent macroscopic failure of the MRAC specimen are captured through DEM numerical simulations and compared with digital image correlation (DIC) results. The typical cracking modes controlled by meso-structures of MRAC are concluded according to numerical observations. A parameter study indicates the dominant influence of the macroscopic mechanical behaviors from the shear strength of the interfacial transition zones (ITZs).


2009 ◽  
Author(s):  
J.-F. Jerier ◽  
B. Harthong ◽  
D. Imbault ◽  
F.-V. Donzé ◽  
P. Dorémus ◽  
...  

Icarus ◽  
2011 ◽  
Vol 212 (1) ◽  
pp. 427-437 ◽  
Author(s):  
Derek C. Richardson ◽  
Kevin J. Walsh ◽  
Naomi Murdoch ◽  
Patrick Michel

TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document