scholarly journals Micromechanical Numerical Modelling on Compressive Failure of Recycled Concrete using Discrete Element Method (DEM)

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4329
Author(s):  
Xin Tan ◽  
Zhengbo Hu ◽  
Wengui Li ◽  
Suhua Zhou ◽  
Tenglong Li

This paper investigates the failure processes of recycled aggregate concrete by a model test and numerical simulations. A micromechanical numerical modeling approach to simulate the progressive cracking behavior of the modeled recycled aggregate concrete, considering its actual meso-structures, is established based on the discrete element method (DEM). The determination procedure of contact microparameters is analyzed, and a series of microscopic contact parameters for different components of modeled recycled aggregate concrete (MRAC) is calibrated using nanoindentation test results. The complete stress–strain curves, cracking process, and failure pattern of the numerical model are verified by the experimental results, proving their accuracy and validation. The initiation, growth, interaction, coalescence of microcracks, and subsequent macroscopic failure of the MRAC specimen are captured through DEM numerical simulations and compared with digital image correlation (DIC) results. The typical cracking modes controlled by meso-structures of MRAC are concluded according to numerical observations. A parameter study indicates the dominant influence of the macroscopic mechanical behaviors from the shear strength of the interfacial transition zones (ITZs).

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3140 ◽  
Author(s):  
Yong Yu ◽  
Bo Wu

In the past decade, directly reusing large pieces of coarsely crushed concrete (referred to as demolished concrete lumps or DCLs) with fresh concrete in new construction was demonstrated as an efficient technique for the recycling of waste concrete. Previous studies investigated the mechanical properties of recycled lump concrete (RLC) containing different sizes of DCLs; however, for actual application of this kind of concrete, little information is known about the influence of the spatial locations of DCLs and coarse aggregates on the concrete strength. Moreover, the mechanical responses of such a concrete containing various shapes of DCLs are also not well illustrated. To add knowledge related to these topics, two-dimensional mesoscale simulations of RLC containing DCLs under axial compression were performed using the discrete element method. The main variables of interest were the relative strength of the new and old concrete, the distribution of the lumps and other coarse aggregates, and the shape of the lumps. In addition, the differences in compression behavior between RLC and recycled aggregate concrete were also predicted. The numerical results indicate that the influence tendency of the spatial locations of DCLs and coarse aggregate pieces on the compressive stress–strain curves for RLC is similar to that of the locations of coarse aggregates for ordinary concrete. The strength variability of RLC is generally higher than that of ordinary concrete, regardless of the relative strength of the new and old concrete included; however, variability has no monotonic trend with an increase in the lump replacement ratio. The mechanical properties of RLC in compression are little influenced by the geometric shape of DCLs as long as the ratio of the length of their long axis to short axis is smaller than 2.0. The compressive strength and elastic modulus of RLC are always superior to those of recycled aggregate concrete designed with a conventional mixing method.


2012 ◽  
Vol 174-177 ◽  
pp. 1277-1280 ◽  
Author(s):  
Hai Yong Cai ◽  
Min Zhang ◽  
Ling Bo Dang

Compressive strengths of recycled aggregate concrete(RAC) with different recycled aggregates(RA) replacement ratios at 7d, 28d, 60d ages are investigated respectively. Failure process and failure mode of RAC are analyzed, influences on compressive strength with same mix ratio and different RA replacement ratios are analyzed, and the reason is investigated in this paper. The experimental results indicate that compressive strength of recycled concrete at 28d age can reach the standard generally, it is feasible to mix concrete with recycled aggregates, compressive strength with 50% replacement ratio is relatively high.


2013 ◽  
Vol 671-674 ◽  
pp. 1736-1740
Author(s):  
Xue Yong Zhao ◽  
Mei Ling Duan

The complete stress-strain curves of recycled aggregate concrete with different recycled coarse aggregate replacement percentages were tested and investigated. An analysis was made of the influence of varying recycled coarse aggregate contents on the complete stress-strain curve, peak stress, peak strain and elastic modulus etc. The elastic modulus of RC is lower than natural concrete (NC), and with the recycled coarse aggregate contents increase, it reduces. While with the increase of water-cement ratio (W/C), recycled concrete compressive strength and elastic modulus improve significantly. In addition, put forward a new equation on the relationship between Ec and fcu of the RC.


Sign in / Sign up

Export Citation Format

Share Document