Feasibility of the Potential for Wave and Wind Energy Hybrid Farm to Supply Offshore Oil Platform in Gulf of Mexico

2021 ◽  
Author(s):  
Chengcheng Gu ◽  
Hua Li ◽  
Francisco Haces-Fernandez

Abstract Offshore oil and gas platforms use gas turbine with natural gas or fuel diesel for their high demand of power. Due to the declining amount of gas available, high carbon footprint, increasing cost of fuel and inefficient operating, alternative energy options are necessary and imminent. Most offshore oil and gas platforms locate in deep water surrounded by huge amount of energetic wave resources, hence, the feasibility of supplying offshore oil facilities electricity by hybrid wave and wind energy farms based on daily energy power production instead of annual average was conducted in this project. The hybrid energy farm was modeled and validated by applying meteorological data in Gulf of Mexico area from WaveWatch III system. With the hindcast wave and wind condition data from 1979 to 2019, daily energy generation of the hybrid energy farm was estimated. Meantime, the feasibility of suppling offshore oil and gas facilities by the proposed combined hybrid farm was assessed. The project optimized the configuration of the hybrid wave and wind energy farm to satisfy offshore oil and gas platform demands and reduce the variation of power generation, so that it may be feasibility to gradually substitute the gas turbines. Through matching the local wave and wind conditions, the project was able to maximize the power output while minimize the variation within limited ocean surface area. The project addressed the advantages of hybrid wave and wind devices, as well as theoretical prospection of wave harvesting device and wind turbine combination. To validate the proposed optimization model, a case study was explored by using Vesta V90 3MW wind turbines and Pelamis 750kW wave energy converters to supply five offshore platforms in more than 45 m deep water areas. The results indicated the possibility of bringing wave energy into large commercial operation and utilization with minor investment and environmental impact.

Author(s):  
Kee Chien Ting ◽  
Kishor Chavan ◽  
Samuel Balmford ◽  
Daniel Sullivan

Flexible riser and flowline systems used in offshore oil and gas developments in shallow and deep water are typically terminated with vertical connectors with goosenecks or with horizontal connectors. An alternative arrangement is to terminate with PLET although it is not as commonly adopted. PLETs usually have a sizeable dimension and weight compared to the vertical and horizontal connectors hence present handling and deployment issues. A number of flexible risers and flowlines terminated with PLETs recently installed in a deepwater development in Gulf of Mexico showed that with careful engineering such deployment is viable and can be performed safely by a typical flexlay vessel. The installation engineering, installation aid requirements, the deployment methodology are presented and discussed. The observations from ensuing offshore operation showed that the flexible torsion and twist during deployment need to be carefully monitored and managed offshore. Flexibles terminated with PLETs could be potentially suitable where life of field gooseneck load may be excessive or for bigger and stiffer flexible products where making the 2nd end connections might be a challenging undertaking offshore. A PLET could also be used where an intermediate structure is required along a MEG line for example where In-Line Terminations (ILTs) are needed for flying leads plug-in. This would save on requirement for an intermediate structure and connectors.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2985 ◽  
Author(s):  
Erick Alves ◽  
Santiago Sanchez ◽  
Danilo Brandao ◽  
Elisabetta Tedeschi

This paper investigates power quality issues in a wind-powered offshore oil and gas platform operating in island mode. Topics of interest are the negative effects that load and wind power variability have on the electrical system frequency and voltage; and how those influence the gas turbine operation. The authors discuss how smart load management together with energy storage can mitigate those effects, and propose a control algorithm for that. Simulations in MATLAB/Simulink demonstrate that the proposed energy storage controller reduces frequency and voltage variations in a case study. Moreover, the paper presents a methodology to derive a simplified model of the hybrid energy system that reduces simulation time in at least two orders of magnitude. The latter can be a useful tool for optimization algorithms evaluating a huge number of scenarios, especially those dealing with economical dispatch of generators or sizing of energy storage systems.


2020 ◽  
Vol 54 (6) ◽  
pp. 3530-3538 ◽  
Author(s):  
Tara I. Yacovitch ◽  
Conner Daube ◽  
Scott C. Herndon

Author(s):  
Yandong Zhou ◽  
Facheng Wang

Fixed platform have been widely employed in the offshore oil and gas reservoirs development. Pile foundation reliability is critical for these platforms where drilling, production and other functions are integrated. The lifting operation for the long pile, being a key step in the jacket installation, has been considered for further developments. With deep water developments, the sizes and weights of long piles are reasonably bigger. The corresponding process and equipment employed are subsequently altered, which brings challenges to developing a cost-effective, easy-operable approach for lifting operation. In this paper, the technology for the offshore long pile upending lifting operation including pile feature, installation methodology, lifting rigging and analysis model, covering water depths ranging from shallow to near deep water zone (60–300 m water depth) has been suggested. In addition, the applicability of the adoptable novel approaches has been discussed considering the practical project experience.


Author(s):  
Chingiz Saibovich Guseinov ◽  
Dmitry Leonidovich Kulpin ◽  
Galie Hamzaevna Efimova

The article dwells upon the problem of developing offshore oil and gas fields around the world accompanied by producing not only stationary and semi-submersible rigs and drilling vessels, but also a large number of auxiliary vessels for various functional purposes. It would be impossible to extract offshore hydrocarbons under the sea bed without them. Special fleet was formed during the years of development of offshore oil and gas fields in the Russian Federation, the part of it being imported. In the upcoming years, our country will face some challenges related to the development of Arctic reservoirs which are mainly located in the long-frozen deep seas. Their development in deep water will only be possible with auxiliary fleet, as it will be necessary to build deep water drilling vessels and other facilities/vessels. The types of vessels of the modern oil and gas fleet are presented, depending on the area of navigation, the depth of use and the specifics of the work performed. It is noted that currently in world practice there are no examples of using proven drilling and production technologies in severe ice conditions, when ice thickness exceeds 2-3 m, because the modern ice-resistant stationary platforms can not withstand the load at a depth of more than 80-100 m. The auxiliary fleet will both service offshore rigs and ensure their long-term productivity and functionality. For the development of oil and gas fields in the long-frozen Arctic deep-sea areas it is necessary to create a full-fledged underwater oil and gas fleet.


Sign in / Sign up

Export Citation Format

Share Document