scholarly journals Cutting Edge: An In Vivo Reporter Reveals Active B Cell Receptor Signaling in the Germinal Center

2015 ◽  
Vol 194 (7) ◽  
pp. 2993-2997 ◽  
Author(s):  
James Mueller ◽  
Mehrdad Matloubian ◽  
Julie Zikherman
2021 ◽  
pp. ji2100132
Author(s):  
Sarah J. Meyer ◽  
Marie Steffensen ◽  
Andreas Acs ◽  
Thomas Weisenburger ◽  
Charlotte Wadewitz ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 583-583
Author(s):  
Delphine C.M. Rolland ◽  
Venkatesha Basrur ◽  
Kevin Conlon ◽  
Thomas Wolfe ◽  
Damian Fermin ◽  
...  

Abstract Abstract 583 Background: Reversible phosphorylation is a fundamental post-translational modification which regulates cellular functions by modulation of the activity of critical proteins in cellular signal transduction pathways. Deregulation of protein phosphorylation underlies the pathogenesis of many human diseases, especially cancers. Large scale phosphoproteomic analysis offer an opportunity to catalogue and understand changes in protein phosphorylation associated with cancers and thus provide new possibilities for discovering novel diagnostic biomarkers and new therapeutic targets. Although B-cell non-Hodgkin lymphomas (NHLs) represent the seventh most common cancer in western countries, the extent to which phosphoprotein deregulation may be involved in their pathogenesis is largely unknown. Here we report results of a label-free quantitative phosphoproteomics study of 3 B-cell NHL entities and investigate the contribution of one of the identified protein in the germinal center-derived NHL proliferation. Material and methods: Six milligrams of protein from 13 human B-NHL-derived cell lines (4 mantle cell lymphomas (MCL), 3 Burkitt lymphomas (BL) and 6 follicular lymphomas (FL)) digested by trypsin were subjected to phosphopeptide enrichment using metal oxide affinity chromatography (MOAC) and immunoprecipitation using a cocktail of 3 anti-phosphotyrosine antibodies. Phosphopeptides were subjected to liquid chromatography (LC) and MS/MS. Spectra were searched against the UniProtKB database using X!Tandem with k-score. Search results were then post-processed with PeptideProphet and ProteinProphet. All proteins at false discovery rate of 1% were considered for further analysis. Quantitation of identified peptides was based on spectral counts of phosphorylated peptides. Immunoprecipitation and western blot studies were performed to validate the differential phosphorylation of a subset of proteins. The functional consequences of perturbation of an outlier tyrosine phosphorylated protein (PAG1) were explored using shRNA-mediated depletion followed by both colony formation and proliferation assays with or without BCR stimulation by anti-IgM or lipopolysaccharide (LPS). Results: Quantitative phosphoproteomics revealed a total of 7326 serine/threonine phosphorylatided peptides and 392 tyrosine phosphorylated peptides corresponding to 420, 290 and 356 phosphorylated proteins in BL, FL and MCL, respectively. While a subset of phosphoproteins was identified across all lymphoma entities, hierarchical clustering analysis revealed distinctive signatures for all 3 NHL subtypes. Regarding proteins identified with phosphorylated tyrosine residues, BL and FL cell lines were characterized by phosphorylation of proteins implicated in active B-cell receptor signaling such as BTK, LYN, LCK and SYK whereas MCL cell lines were characterized by phosphorylation of proteins implicated in cell cycle control such as CDK1 and CDK2. Interestingly, we identified PAG1, a negative regulator of B-cell receptor signaling, as the most highly tyrosine phosphorylated protein in the germinal center derived cell lines (BL and FL) exclusively. Differential phosphorylation of several proteins was validated by immunoprecipitation and western blot studies. PAG1 silencing in BJAB (BL cell line) by a specific PAG1 shRNA resulted in an increased propensity for colony formation when compared to a scramble shRNA. PAG1 depletion also enhanced significantly the proliferation of BJAB 48h after BCR stimulation by either anti-IgM (3.9-fold increase versus 3-fold increase, p = 0.016) or LPS (4.2-fold increase versus 3-fold increase, p = 0.015). Conclusion: Our study reveals the utility of unbiased phosphoproteome interrogation of B-NHLs to characterize signaling networks that may provide insights into the pathogenetic mechanisms. We identify more than 500 phosphorylated proteins in each NHL entity revealing distinct protein phosphorylation signatures between MCL and germinal center derived lymphomas. Activation of the BCR signaling pathway is characteristic of and pathologically relevant in germinal center derived NHLs. The results of our study reveal novel phosphorylation sites and signatures that may be exploited as diagnostic biomarkers or therapeutic targets. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 15-15
Author(s):  
Daniel Trageser ◽  
Cihangir Duy ◽  
Lars Klemm ◽  
Tanja Gruber ◽  
Rahul Nahar ◽  
...  

Abstract Pre-B cells within the bone marrow are destined to die unless they are rescued through survival signals from the pre-B cell receptor. Studying the configuration of the immunoglobulin heavy chain locus (IGHM) in sorted human bone marrow pre-B cells by single-cell PCR, we detected a functional IGHM allele consistent with the expression of a functional pre-B cell receptor in the vast majority of normal human pre-B cells. However, only in 10 of 57 cases of BCR-ABL1-transformed pre-B cell-derived acute lymphoblastic leukemia (ALL), we detected a functional IGHM allele. While normal pre-B cells respond vigorously to pre-B cell receptor engagement by Ca2+ release, the pre-B cell receptor was unresponsive even in the few cases of BCR-ABL1-driven ALL, in which we amplified a productively rearranged IGHM allele. For this reason, we studied the function of the pre-B cell receptor during early B cell development and progressive transformation in a BCR-ABL1-transgenic mouse model: Interestingly, BCR-ABL1-transgenic mice that have not yet undergone leukemic transformation show almost normal pre-B cell receptor selection. In these pre-leukemic pre-B cells, however, expression of the BCR-ABL1-transgene is very low as compared to full-blown ALL, suggesting that high levels of BCR-ABL1 expression are not compatible with normal expression of the pre-B cell receptor. Consistent with our observations in human ALL, full-blown ALL clones in BCR-ABL1-transgenic mice show defective pre-B cell receptor selection and the pre-B cell receptors expressed on few leukemic cells are not functional. Treatment of leukemic mice with the BCR-ABL1 kinase inhibitor AMN107, however, reinstated normal pre-B cell receptor selection and pre-B cell receptor function within seven days. These data suggest that the transforming signal through BCR-ABL1 and normal survival signals through the pre-B cell receptor are mutually exclusive. To test whether functional pre-B cell receptor signaling prevents transformation by BCR-ABL1, we transformed murine pre-B cells carrying a deletion of the SLP65 gene, which is required for functional pre-B cell receptor signaling. Unlike SLP65-wildtype pre-B cells, SLP65−/− pre-B cells can be transformed by BCR-ABL1 at a high efficiency. Reconstitution of SLP65 using a retroviral vector, however, induced rapid cell death of BCR-ABL1-transformed pre-B cells. We next investigated the potential impact of Slp65-reconstitution on leukemic growth of BCR-ABL1-transformed pre-B cells from SLP65−/− mice in vivo. To this end, SLP65−/− BCR-ABL1-transformed pre-B cells were labeled with firefly-luciferase and then transduced with retroviral vectors encoding SLP65/GFP or GFP alone. NOD/SCID mice were sublethally irradiated and injected with either SLP65/GFP+ or GFP+ ALL cells. Engraftment as monitored by bioluminescence imaging was delayed by more than three weeks in mice injected with SLP65/GFP+ ALL cells as compared to mice injected with GFP+ ALL cells. 36 days after injection, the first mice that were inoculated with GFP-transduced leukemia cells, became terminally ill and also the other mice in this group showed weight loss at that time. In contrast, the mice injected with SLP65-GFP-transduced ALL cells showed no signs of disease and no significant weight loss. At this time, all mice were sacrificed: Whereas mice injected with GFP-transduced ALL cells showed splenomegalia and leukemic infiltration into multiple organs, there was only mild splenic enlargement, when SLP65-reconstituted ALL cells were injected. Reconstitution of SLP65 also reduced the frequency of BCR-ABL1-transformed leukemia cells about 15-fold in the bone marrow, 5-fold in the spleen and >100-fold in the peripheral blood. We conclude that deficiency of the pre-B cell receptor-related signaling molecule SLP65 not only represents a frequent feature in human ALL cells but also represents a critical requirement for BCR-ABL1-driven leukemic growth in vivo. We conclude that pre-B cell receptor signaling renders B cell progenitor cells non-permissive to BCR-ABL1-mediated transformation. Only crippled pre-B cells with a non-functional pre-B cell receptor are susceptible to BCR-ABL1-mediated transformation.


Leukemia ◽  
2013 ◽  
Vol 28 (3) ◽  
pp. 649-657 ◽  
Author(s):  
S Cheng ◽  
J Ma ◽  
A Guo ◽  
P Lu ◽  
J P Leonard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document