scholarly journals CD4 T Cell-Mediated Alloresistance to Fully MHC-Mismatched Allogeneic Bone Marrow Engraftment Is Dependent on CD40-CD40 Ligand Interactions, and Lasting T Cell Tolerance Is Induced by Bone Marrow Transplantation with Initial Blockade of this Pathway

2001 ◽  
Vol 166 (5) ◽  
pp. 2970-2981 ◽  
Author(s):  
Hiroshi Ito ◽  
Josef Kurtz ◽  
Juanita Shaffer ◽  
Megan Sykes
Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4336-4343 ◽  
Author(s):  
Josef Kurtz ◽  
Juanita Shaffer ◽  
Ariadne Lie ◽  
Natalie Anosova ◽  
Gilles Benichou ◽  
...  

Abstract Anti-CD154 (CD40L) monoclonal antibody (mAb) plus bone marrow transplantation (BMT) in mice receiving CD8 cell-depleting mAb leads to long-term mixed hematopoietic chimerism and systemic donor-specific tolerance through peripheral and central deletional mechanisms. However, CD4+ T-cell tolerance is demonstrable in vitro and in vivo rapidly following BMT, before deletion of donor-reactive CD4 cells is complete, suggesting the involvement of other mechanisms. We examined these mechanisms in more detail. Spot enzyme-linked immunosorbent (ELISPOT) analysis revealed specific tolerization (within 4 to 15 days) of both T helper 1 (Th1) and Th2 cytokine responses to the donor, with no evidence for cytokine deviation. Tolerant lymphocytes did not significantly down-regulate rejection by naive donor-reactive T cells in adoptive transfer experiments. No evidence for linked suppression was obtained when skin expressing donor alloantigens in association with third-party alloantigens was grafted. T-cell receptor (TCR) transgenic mixing studies revealed that specific peripheral deletion of alloreactive CD4 T cells occurs over the first 4 weeks following BMT with anti-CD154. In contrast to models involving anti-CD154 without BMT, BMT with anti-CD154 leads to the rapid induction of anergy, followed by deletion of pre-existing donor-reactive peripheral CD4+ T cells; the rapid deletion of these cells obviates the need for a regulatory cell population to suppress CD4 cell-mediated alloreactivity. (Blood. 2004;103:4336-4343)


1998 ◽  
Vol 187 (12) ◽  
pp. 2037-2044 ◽  
Author(s):  
Thomas Wekerle ◽  
Mohamed H. Sayegh ◽  
Joshua Hill ◽  
Yong Zhao ◽  
Anil Chandraker ◽  
...  

A reliable, nontoxic method of inducing transplantation tolerance is needed to overcome the problems of chronic organ graft rejection and immunosuppression-related toxicity. Treatment of mice with single injections of an anti-CD40 ligand antibody and CTLA4Ig, a low dose (3 Gy) of whole body irradiation, plus fully major histocompatibility complex–mismatched allogeneic bone marrow transplantation (BMT) reliably induced high levels (>40%) of stable (>8 mo) multilineage donor hematopoiesis. Chimeric mice permanently accepted donor skin grafts (>100 d), and rapidly rejected third party grafts. Progressive deletion of donor-reactive host T cells occurred among peripheral CD4+ lymphocytes, beginning as early as 1 wk after bone marrow transplantation. Early deletion of peripheral donor-reactive host CD4 cells also occurred in thymectomized, similarly treated marrow recipients, demonstrating a role for peripheral clonal deletion of donor-reactive T cells after allogeneic BMT in the presence of costimulatory blockade. Central intrathymic deletion of newly developing T cells ensued after donor stem cell engraftment had occurred. Thus, we have shown that high levels of chimerism and systemic T cell tolerance can be reliably achieved without myeloablation or T cell depletion of the host. Chronic immunosuppression and rejection are avoided with this powerful, nontoxic approach to inducing tolerance.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2392-2392
Author(s):  
Hongwei Wang ◽  
Fengdong Cheng ◽  
P. Horna ◽  
I.V. Suarez ◽  
Jian Wu ◽  
...  

Abstract Tumor-antigen-specific T-cell tolerance imposes a significant barrier to the development of effective therapeutic cancer vaccines. Bone marrow-derived antigen presenting cells (APCs) are critical in the induction of this unresponsive state. The requirement for APCs in tolerance induction, together with their well-known role in priming T-cell antitumor responses place APCs at the crossroads of immune activation versus immune tolerance and points to manipulation of these cells as an enticing strategy to modulate T-cell responses against tumors. Identification of the intracellular mechanisms by which APCs induces either T-cell outcome represents therefore a critical step to better understand and overcome tumor-induced immune tolerance. Histones tail plays an important role in modulation of gene transcription. Emerging evidence suggest that inhibition of hystone deacetylases (HDAC) increases the expression of inflammatory genes. Given that the inflammatory status of the APC at the time of antigen presentation is central in determining T-cell priming versus T-cell tolerance, we evaluated the effects of the HDAC inhibitor LAQ842 (Novartis Pharmaceutical Inc.) on APC function and regulation of antigen-specific CD4+ T-cell responses. First, treatment of peritoneal elicited macrophages (PEM) or bone marrow derided dendritic cells (DCs) with increasing concentrations of LAQ842 resulted in enhanced acetylation of hystones H-2A, H-2B, H3 and H4. Analysis of the expression of MHC class molecules and co-stimulatory molecules revealed a significant increase in B7.2 and CD40 in LAQ842-treated APCs as compared to untreated APCs. Utilizing multi-template RNA probes and ELISA we found that LAQ842-treated APCs produce enhanced levels of several inflammatory mediators such as IL-1a, IL-1b, IL-6, TNF-a and RANTES relative to untreated APCs. Similarly, in response to LPS-stimulation, LAQ842-treated APCs produce significant higher levels of the pro-inflammatory cytokine IL-12 but reduce production of the anti-inflammatory cytokine IL-10 as determined by RT-PCR and ELISA. Furthermore, by chromatin immune precipitation (CHIP) assays we found that LAQ842-treated APCs display an increased acetylation of histones associated with the IL-12 promoter but a diminished acetylation of histones at the IL-10 promoter in response to LPS stimulation. Next, we evaluated whether the inflammatory APCs induced by LAQ842 were capable of effectively present antigen and prime productive antigen-specific T-cell responses. In vitro treatment of PEM or DCs with increasing concentrations of LAQ842 resulted in an enhanced presentation of HA-peptide to naïve CD4+ T cells specific for a MHC class II restricted epitope of influenza hemagglutinin (HA). Indeed, these clonotypic T cells display an enhanced HA-specific proliferation, IL-2 and IFN-gamma production relative to clonotypic T cells that encountered HA-antigen on untreated APCs. More importantly, LAQ842-treated APCs were able to restore the responsiveness of tolerant CD4+ T-cells isolated from lymphoma bearing hosts. By demonstrating that HDAC inhibitor induces inflammatory APCs capable of restoring the responsiveness of tolerant T-cells, our studies have unveiled a previously unknown immunological effect of these agents and have broadened their clinical scope as promising adjuvants in cancer immunotherapy.


2008 ◽  
Vol 181 (6) ◽  
pp. 4371-4380 ◽  
Author(s):  
Thomas Fehr ◽  
Sophia Wang ◽  
Fabienne Haspot ◽  
Josef Kurtz ◽  
Peter Blaha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document