scholarly journals Targeting Src Homology 2 Domain-Containing Tyrosine Phosphatase (SHP-1) into Lipid Rafts Inhibits CD3-Induced T Cell Activation

2001 ◽  
Vol 166 (6) ◽  
pp. 3975-3982 ◽  
Author(s):  
Michael Wei-Chih Su ◽  
Chao-Lan Yu ◽  
Steven J. Burakoff ◽  
Yong-Jiu Jin
1996 ◽  
Vol 237 (3) ◽  
pp. 736-742 ◽  
Author(s):  
Pankaj Tailor ◽  
Thomas Jascur ◽  
Scott Williams ◽  
Maria Willebrand ◽  
Clement Couture ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (1) ◽  
pp. 74-84 ◽  
Author(s):  
Shudan Shen ◽  
Jasmine Lau ◽  
Minghua Zhu ◽  
Jianwei Zou ◽  
Deirdre Fuller ◽  
...  

Abstract The Src homology 2 domain–containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76) is a cytosolic adaptor protein essential for thymocyte development and T-cell activation. It contains a sterile-α motif (SAM) domain, 3 phosphotyrosine motifs, a proline-rich region, and a Src homology 2 domain. Whereas the other domains have been extensively studied, the role of the SAM domain in SLP-76 function is not known. To understand the function of this domain, we generated SLP-76 knockin mice with the SAM domain deleted. Analysis of these mice showed that thymocyte development was partially blocked at the double-positive to single-positive transition. Positive and negative thymic selection was also impaired. In addition, we analyzed T-cell receptor (TCR)–mediated signaling in T cells from these mutant mice. TCR-mediated inositol 1,4,5-triphosphate production, calcium flux, and extracellular signal-regulated kinase activation were decreased, leading to defective interleukin-2 production and proliferation. Moreover, despite normal association between Gads and SLP-76, TCR-mediated formation of SLP-76 microclusters was impaired by the deletion of the SAM domain. Altogether, our data demonstrated that the SAM domain is indispensable for optimal SLP-76 signaling.


2000 ◽  
Vol 191 (6) ◽  
pp. 985-994 ◽  
Author(s):  
Suling Li ◽  
Shangwu Chen ◽  
Xiufeng Xu ◽  
Anette Sundstedt ◽  
Kajsa M. Paulsson ◽  
...  

Members of the suppressor of cytokine signaling (SOCS) family were discovered as negative regulators of cytokine signaling by inhibition of the Janus kinase–signal transducer and activator of transcription (Jak-STAT) pathway. Among them, cytokine-induced Src homology 2 (SH2) protein (CIS) was found to inhibit the interleukin 3– and erythropietin-mediated STAT5 signaling pathway. However, involvement of SOCS proteins in other signaling pathways is still unknown. This study shows that the expression of CIS is selectively induced in T cells after T cell receptor (TCR) stimulation. In transgenic mice, with selective expression of CIS in CD4 T cells, elevated CIS strongly promotes TCR-mediated proliferation and cytokine production in vitro, and superantigen-induced T cell activation in vivo. Forced expression of CIS also prolongs survival of CD4 T cells after TCR activation. Molecular events immediately downstream from the TCR are not changed in CIS-expressing CD4 T cells, but activation of mitogen-activated protein (MAP) kinase pathways by TCR stimulation is significantly enhanced. Together with the increased MAP kinase activation, a direct interaction of CIS and protein kinase Cθ was also demonstrated. These results suggest that CIS is one of the important regulators of TCR-mediated T cell activation. The functions of CIS, enhancing TCR signaling and inhibiting cytokine signaling, may be important in the regulation of immune response and homeostasis.


1996 ◽  
Vol 16 (12) ◽  
pp. 7151-7160 ◽  
Author(s):  
S Yamasaki ◽  
M Takamatsu ◽  
M Iwashima

Antigenic stimulation of the T-cell antigen receptor initiates signal transduction through the immunoreceptor tyrosine-based activation motifs (ITAMs). When its two tyrosines are phosphorylated, ITAM forms a binding site for ZAP-70, one of the cytoplasmic protein tyrosine kinases essential for T-cell activation. The signaling process that follows ZAP-70 binding to ITAM has been analyzed by the construction of fusion proteins that localize ZAP-70 to the plasma membrane. We found that membrane-localized forms of ZAP-70 induce late signaling events such as activation of nuclear factor of activated T cells without any stimulation. This activity was observed only when Lck was expressed and functional. In addition, each mutation that affects the function of Lck in the kinase, Src homology 2 (SH2), and SH3 domains greatly impaired the signaling ability of the chimeric protein. Therefore, Lck functions in multiple manners in T-cell activation for the steps following ZAP-70 binding to ITAM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kaitao Li ◽  
Zhou Yuan ◽  
Jintian Lyu ◽  
Eunseon Ahn ◽  
Simon J. Davis ◽  
...  

AbstractDespite the clinical success of blocking its interactions, how PD-1 inhibits T-cell activation is incompletely understood, as exemplified by its potency far exceeding what might be predicted from its affinity for PD-1 ligand-1 (PD-L1). This may be partially attributed to PD-1’s targeting the proximal signaling of the T-cell receptor (TCR) and co-stimulatory receptor CD28 via activating Src homology region 2 domain-containing phosphatases (SHPs). Here, we report PD-1 signaling regulates the initial TCR antigen recognition manifested in a smaller spreading area, fewer molecular bonds formed, and shorter bond lifetime of T cell interaction with peptide-major histocompatibility complex (pMHC) in the presence than absence of PD-L1 in a manner dependent on SHPs and Leukocyte C-terminal Src kinase. Our results identify a PD-1 inhibitory mechanism that disrupts the cooperative TCR–pMHC–CD8 trimolecular interaction, which prevents CD8 from augmenting antigen recognition, explaining PD-1’s potent inhibitory function and its value as a target for clinical intervention.


Sign in / Sign up

Export Citation Format

Share Document