Cutting Edge: Subunit Booster Vaccination Confers Sterilizing Immunity against Liver-Stage Malaria in Mice Initially Primed with a Weight-Normalized Dose of Radiation-Attenuated Sporozoites

2021 ◽  
pp. ji2100818
Author(s):  
Mitchell N. Lefebvre ◽  
Lisa L. Drewry ◽  
Lecia L. Pewe ◽  
Lisa S. Hancox ◽  
Arturo Reyes-Sandoval ◽  
...  
2021 ◽  
Author(s):  
Shaji Daniel ◽  
Alexander Pichugin ◽  
Holly Torano ◽  
Jonathan P. Renn ◽  
Jennifer Kwan ◽  
...  

Pre-erythrocytic vaccines prevent malaria by targeting parasites in the clinically silent sporozoite and liver stages and preventing progression to the virulent blood stages. The leading pre-erythrocytic vaccine RTS,S/AS01E (Mosquirix®) entered implementation programs in 2019 and targets the major sporozoite surface antigen called circumsporozoite protein or CSP. However, in phase III clinical trials, RTS,S conferred partial protection with limited durability, indicating a need to improve CSP-based vaccination. Previously, we identified highly expressed liver stage proteins that could potentially be used in combination with CSP and are referred to as pre-erythrocytic vaccine antigens (PEVA). Here, we developed heterologous prime-boost CSP vaccination models to confer partial sterilizing immunity against Plasmodium yoelii (Py)(protein prime/adenovirus 5 (Ad5) boost) and P. berghei (Pb) (DNA prime/Ad5 boost) in mice. When combined as individual antigens with PyCSP, 3 of 8 PyPEVA significantly enhanced sterile protection against sporozoite challenge, compared to PyCSP alone. Similar results were obtained when 3 PbPEVA and PbCSP were combined in a single vaccine regimen. In general, PyCSP antibody responses were similar after CSP alone versus CSP+PEVA vaccinations. Both Py and Pb CSP+PEVA combination vaccines induced robust CD8 + T cell responses including signature IFN-γ increases. In the Pb model system, IFN-γ responses were significantly higher in hepatic than splenic CD8 + T cells. The addition of novel antigens may enhance the degree and duration of sterile protective immunity conferred by a human vaccine such as RTS,S.


2021 ◽  
Author(s):  
Selma Belhimeur ◽  
Sylvie Briquet ◽  
Roger Peronet ◽  
Jennifer Pham ◽  
Pierre-Henri Commere ◽  
...  

Plasmodium sporozoites inoculated by Anopheles mosquitoes into the skin of the mammalian host migrate to the liver before infecting hepatocytes. Previous work demonstrated that early production of IL-6 in the liver was found to be detrimental for the parasite growth, leading to the acquisition of a long-lasting immune protection. Considering IL-6 as a critical pro-inflammatory signal, we explored a novel approach whereby the parasite itself encodes for the murine IL-6 gene. We generated transgenic P.berghei parasites that express murine IL-6 during liver stage development. Though IL-6 transgenic sporozoites develop into exo-erythrocytic forms in cultured hepatocytes in vitro, these parasites were not capable of inducing a blood stage infection in mice. Furthermore, immunization of mice with transgenic IL-6 sporozoites elicited a long-lasting CD8+ T cell-mediated protective immunity against a subsequent infectious sporozoite challenge. Collectively, this study demonstrates that parasite-encoded IL-6 impairs Plasmodium infection at the liver stage, forming the basis of a novel suicide vaccine strategy to elicit protective antimalarial immunity.


Author(s):  
J. Temple Black

The output of the ultramicrotomy process with its high strain levels is dependent upon the input, ie., the nature of the material being machined. Apart from the geometrical constraints offered by the rake and clearance faces of the tool, each material is free to deform in whatever manner necessary to satisfy its material structure and interatomic constraints. Noncrystalline materials appear to survive the process undamaged when observed in the TEM. As has been demonstrated however microtomed plastics do in fact suffer damage to the top and bottom surfaces of the section regardless of the sharpness of the cutting edge or the tool material. The energy required to seperate the section from the block is not easily propogated through the section because the material is amorphous in nature and has no preferred crystalline planes upon which defects can move large distances to relieve the applied stress. Thus, the cutting stresses are supported elastically in the internal or bulk and plastically in the surfaces. The elastic strain can be recovered while the plastic strain is not reversible and will remain in the section after cutting is complete.


Sign in / Sign up

Export Citation Format

Share Document