Blade‐Vortex Interaction Acoustic Results from a Forty Percent Model Rotor in the DNW

1988 ◽  
Vol 33 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Ruth M. Martin ◽  
Wolf R. Splettstoesser
2014 ◽  
Vol 118 (1201) ◽  
pp. 297-313 ◽  
Author(s):  
J. de Montaudouin ◽  
N. Reveles ◽  
M. J. Smith

Abstract The aerodynamic and aeroelastic behaviour of a rotor become more complex as advance ratios increase to achieve high-speed forward fight. As the rotor blades encounter large regions of cross and reverse flows during each revolution, strong variations in the local Mach regime are encountered, inducing complex elastic blade deformations. In addition, the wake system may remain in the vicinity of the rotor, adding complexity to the blade loading. The aeroelastic behaviour of a model rotor with advance ratios ranging from 0·5 to 2·0 has been evaluated with aerodynamics provided via a computational fluid dynamics (CFD) method. Significant radial blade-vortex interaction can occur at a high advance ratio; the advance ratio at which this occurs is dependent on the rotor configuration. This condition is accompanied by high vibratory loads, peak negative torsion, and peak torsion and in-plane loads. The high vibratory loading increases the sensitivity of the trim model, so that at some high advance ratios the vibratory loads must be filtered to achieve a trimmed state.


1987 ◽  
Vol 32 (1) ◽  
pp. 3-12 ◽  
Author(s):  
D. A. Boxwell ◽  
F. H. Schmitz ◽  
W. R. Splettstoesser ◽  
K. J. Schultz

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 909-912
Author(s):  
Ronald J. Epstein ◽  
John A. Rule ◽  
Donald B. Bliss

1990 ◽  
Author(s):  
MICHAEL WILDER ◽  
MATTHEW PESCE ◽  
DEMETRI TELIONIS ◽  
DAVIDR. POLING

1999 ◽  
Vol 103 (1021) ◽  
pp. 143-146 ◽  
Author(s):  
T. Wang ◽  
F. N. Coton

Abstract The Beddoes near wake model, developed for high resolution blade vortex interaction computations, enables efficient numerical evaluation of the downwash due to trailed vorticity in the near wake of a helicopter rotor. The model is, however, limited by the assumption that the near wake lies in the plane of the rotor and, in some cases, by its inability to accurately evaluate the induced velocity contribution from vorticity trailed from inboard blade sections. In this paper, modifications to the method are proposed which address these issues and allow it to be used with confidence over a wider range of rotor flows.


2017 ◽  
Vol 399 ◽  
pp. 104-123 ◽  
Author(s):  
Michael E. Quaglia ◽  
Thomas Léonard ◽  
Stéphane Moreau ◽  
Michel Roger

Sign in / Sign up

Export Citation Format

Share Document