scholarly journals The –SH Protection Method for Determining Accurate Kd Values for Enzyme-Coenzyme Complexes of NAD+-Dependent Glutamate Dehydrogenase and Engineered Mutants: Evidence for Nonproductive NADPH Complexes

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Joanna Griffin ◽  
Paul C. Engel

Inactivation rates have been measured for clostridial glutamate dehydrogenase and several engineered mutants at various DTNB concentrations. Analysis of rate constants allowed determination of Kd for each non-covalent enzyme-DTNB complex and the rate constant for reaction to form the inactive enzyme-thionitrobenzoate adduct. Both parameters are sensitive to the mutations F238S, P262S, the double mutation F238S/P262S, and D263K, all in the coenzyme binding site. Study of the effects of NAD+, NADH and NADPH at various concentrations in protecting against inactivation by 200 μM DTNB allowed determination of Kd values for binding of these coenzymes to each protein, yielding surprising results. The mutations were originally devised to lessen discrimination against the disfavoured coenzyme NADP(H), and activity measurements showed this was achieved. However, the Kd determinations indicated that, although Kd values for NAD+ and NADH were increased considerably, Kd for NADPH was increased even more than for NADH, so that discrimination against binding of NADPH was not decreased. This apparent contradiction can only be explained if NADPH has a nonproductive binding mode that is not weakened by the mutations, and a catalytically productive mode that, though strengthened, is masked by the nonproductive binding. Awareness of the latter is important in planning further mutagenesis.

2008 ◽  
Vol 417 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Muna Sabri ◽  
Adrian J. Dunford ◽  
Kirsty J. McLean ◽  
Rajasekhar Neeli ◽  
Nigel S. Scrutton ◽  
...  

Mycobacterium tuberculosis FprA (flavoprotein reductase A) is an NAD(P)H- and FAD-binding reductase that is structurally/evolutionarily related to adrenodoxin reductase. Structural analysis implicates Arg199 and Arg200 in interactions with the NADP(H) 2′-phosphate group. R199A, R200A and R199A/R200A mutants were characterized to explore the roles of these basic residues. All mutations abolished neutral FAD semiquinone stabilization in the NADPH-reduced enzyme, owing to weakened NADPH affinity. Instead, FAD hydroquinone was formed in all mutants, and each displayed substantially enhanced autooxidation rates (20–40-fold) compared with NADPH-reduced WT (wild-type) FprA. Steady-state ferricyanide reduction studies revealed diminished NADPH affinity (higher Km values), but lower NADH Km values. Despite a lowered kcat, the R199A/R200A mutant exhibited a 200-fold coenzyme specificity switch towards NADH, although substrate inhibition was observed at high NADH concentrations (Ki=250 μM). Stopped-flow FAD reduction studies confirmed substantially increased NADPH Kd values, although the limiting flavin reduction rate constant was similar in all mutants. The R199A mutation abolished electron transfer between hydroquinone FprA and NADP+, while this reaction progressed (via an FADH2-NADP+ charge-transfer intermediate) for R200A FprA, albeit more slowly (klim=58.1 s−1 compared with >300 s−1) than in WT. All mutations caused positive shifts in FAD potential (∼40–65 mV). Binding of an NADPH analogue (tetrahydro-NADP) induced negative shifts in potential (∼30–40 mV) only for variants with the R200A mutation, indicating distinctive effects of Arg199/Arg200 on coenzyme binding mode and FAD potential. Collectively, these data reveal important roles for the phylogenetically conserved arginines in controlling FprA FAD environment, thermodynamics, coenzyme selectivity and reactivity.


2004 ◽  
Vol 116 (33) ◽  
pp. 4406-4411 ◽  
Author(s):  
Steven R. LaPlante ◽  
Araz Jakalian ◽  
Norman Aubry ◽  
Yves Bousquet ◽  
Jean-Marie Ferland ◽  
...  

1974 ◽  
Vol 43 (2) ◽  
pp. 319-325 ◽  
Author(s):  
Veit Witzemann ◽  
Rudolf Koberstein ◽  
Horst Sund ◽  
Ihab Rasched ◽  
Hans Jornvall ◽  
...  

1989 ◽  
Vol 21 (4) ◽  
pp. 285-291 ◽  
Author(s):  
Otto Hockwin ◽  
Peter Müller ◽  
Jan Krolczyk ◽  
Bette A. McCue ◽  
Philip R. Mayer

2017 ◽  
Vol 73 (8) ◽  
pp. 702-709 ◽  
Author(s):  
Hisashi Naitow ◽  
Yoshinori Matsuura ◽  
Kensuke Tono ◽  
Yasumasa Joti ◽  
Takashi Kameshima ◽  
...  

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein–ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.


Biochemistry ◽  
1980 ◽  
Vol 19 (11) ◽  
pp. 2328-2333 ◽  
Author(s):  
James E. Rife ◽  
W. W. Cleland

Sign in / Sign up

Export Citation Format

Share Document