coenzyme specificity
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 6)

H-INDEX

31
(FIVE YEARS 1)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 338
Author(s):  
Shigeyuki Kawai ◽  
Wataru Hashimoto

4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shiping Huang ◽  
Jiaxin Zhao ◽  
Wenjing Li ◽  
Peng Wang ◽  
Zhenglian Xue ◽  
...  

Isocitrate dehydrogenase (IDH) family of proteins is classified into three subfamilies, namely, types I, II, and III. Although IDHs are widely distributed in bacteria, archaea, and eukaryotes, all type III IDHs reported to date are found only in prokaryotes. Herein, a novel type III IDH subfamily member from the marine microalga Phaeodactylum tricornutum (PtIDH2) was overexpressed, purified, and characterized in detail for the first time. Relatively few eukaryotic genomes encode this type of IDH and PtIDH2 shares the highest homology with marine bacterial monomeric IDHs, suggesting that PtIDH2 originated through a horizontal gene transfer event between a marine alga and a bacterium. Size-exclusion chromatography revealed that the native PtIDH2 is a homotetramer (∼320 kDa) in solution, comprising four monomeric IDH-like subunits (80 kDa each). Enzymatic characterization showed that PtIDH2 is a bivalent metal ion-dependent enzyme and Mn2+ is the optimal activator. The recombinant PtIDH2 protein exhibited maximal activity at 35°C and pH 8.0 in the presence of Mn2+. Heat-inactivation analysis revealed that PtIDH2 is a cold-adapted enzyme. Kinetic analysis demonstrated that PtIDH2 is a completely NADP+-specific IDH with no detectable NAD+-associated catalytic activity. The three putative key NADP+-binding residues (His604, Arg615, and Arg664) in PtIDH2 were also evaluated by site-directed mutagenesis. The H604L/R615D/R664S triple mutant showed a 3.25-fold preference for NAD+ over NADP+, implying that the coenzyme specificity of PtIDH2 can be converted from NADP+ to NAD+ through rational engineering approaches. Additionally, the roles of the conserved residues Ala718 and Leu742 in the thermostability of PtIDH2 were also explored by site-directed mutagenesis. We found that the L742F mutant displayed higher thermostability than wild-type PtIDH2. This study expands the phylogeny of the IDH family and provides new insights into the evolution of IDHs.


Author(s):  
Sandra Weitz ◽  
Maria Hermann ◽  
Sonja Linder ◽  
Frank R. Bengelsdorf ◽  
Ralf Takors ◽  
...  

Two different isobutanol synthesis pathways were cloned into and expressed in the two model acetogenic bacteria Acetobacterium woodii and Clostridium ljungdahlii. A. woodii is specialized on using CO2 + H2 gas mixtures for growth and depends on sodium ions for ATP generation by a respective ATPase and Rnf system. On the other hand, C. ljungdahlii grows well on syngas (CO + H2 + CO2 mixture) and depends on protons for energy conservation. The first pathway consisted of ketoisovalerate ferredoxin oxidoreductase (Kor) from Clostridium thermocellum and bifunctional aldehyde/alcohol dehydrogenase (AdhE2) from C. acetobutylicum. Three different kor gene clusters are annotated in C. thermocellum and were all tested. Only in recombinant A. woodii strains, traces of isobutanol could be detected. Additional feeding of ketoisovalerate increased isobutanol production to 2.9 mM under heterotrophic conditions using kor3 and to 1.8 mM under autotrophic conditions using kor2. In C. ljungdahlii, isobutanol could only be detected upon additional ketoisovalerate feeding under autotrophic conditions. kor3 proved to be the best suited gene cluster. The second pathway consisted of ketoisovalerate decarboxylase from Lactococcus lactis and alcohol dehydrogenase from Corynebacterium glutamicum. For increasing the carbon flux to ketoisovalerate, genes encoding ketol-acid reductoisomerase, dihydroxy-acid dehydratase, and acetolactate synthase from C. ljungdahlii were subcloned downstream of adhA. Under heterotrophic conditions, A. woodii produced 0.2 mM isobutanol and 0.4 mM upon additional ketoisovalerate feeding. Under autotrophic conditions, no isobutanol formation could be detected. Only upon additional ketoisovalerate feeding, recombinant A. woodii produced 1.5 mM isobutanol. With C. ljungdahlii, no isobutanol was formed under heterotrophic conditions and only 0.1 mM under autotrophic conditions. Additional feeding of ketoisovalerate increased these values to 1.5 mM and 0.6 mM, respectively. A further increase to 2.4 mM and 1 mM, respectively, could be achieved upon inactivation of the ilvE gene in the recombinant C. ljungdahlii strain. Engineering the coenzyme specificity of IlvC of C. ljungdahlii from NADPH to NADH did not result in improved isobutanol production.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Ting Yang ◽  
Ya-Hui Shao ◽  
Li-Zhong Guo ◽  
Xiang-Lin Meng ◽  
Hao Yu ◽  
...  

ABSTRACT Chromohalobacter salexigens DSM 3043 can grow on N,N-dimethylglycine (DMG) as the sole C, N, and energy source and utilize sarcosine as the sole N source under aerobic conditions. However, little is known about the genes and enzymes involved in the conversion of DMG to sarcosine in this strain. In the present study, gene disruption and complementation assays indicated that the csal_0990, csal_0991, csal_0992, and csal_0993 genes are responsible for DMG degradation to sarcosine. The csal_0990 gene heterologously expressed in Escherichia coli was proven to encode an unusual DMG dehydrogenase (DMGDH). The enzyme, existing as a monomer of 79 kDa with a noncovalently bound flavin adenine dinucleotide, utilized both DMG and sarcosine as substrates and exhibited dual coenzyme specificity, preferring NAD+ to NADP+. The optimum pH and temperature of enzyme activity were determined to be 7.0 and 60°C, respectively. Kinetic parameters of the enzyme toward its substrates were determined accordingly. Under high-salinity conditions, the presence of DMG inhibited growth of the wild type and induced the production and accumulation of trehalose and glucosylglycerate intracellularly. Moreover, exogenous addition of DMG significantly improved the growth rates of the four DMG– mutants (Δcsal_0990, Δcsal_0991, Δcsal_0992, and Δcsal_0993) incubated at 37°C in S-M63 synthetic medium with sarcosine as the sole N source. 13C nuclear magnetic resonance (13C-NMR) experiments revealed that not only ectoine, glutamate, and N-acetyl-2,4-diaminobutyrate but also glycine betaine (GB), DMG, sarcosine, trehalose, and glucosylglycerate are accumulated intracellularly in the four mutants. IMPORTANCE Although N,N-dimethylglycine (DMG) dehydrogenase (DMGDH) activity was detected in cell extracts of microorganisms, the genes encoding microbial DMGDHs have not been determined until now. In addition, to our knowledge, the physiological role of DMG in moderate halophiles has never been investigated. In this study, we identified the genes involved in DMG degradation to sarcosine, characterized an unusual DMGDH, and investigated the role of DMG in Chromohalobacter salexigens DSM 3043 and its mutants. Our results suggested that the conversion of DMG to sarcosine is accompanied by intramolecular delivery of electrons in DMGDH and intermolecular electron transfer between DMGDH and other electron acceptors. Moreover, an unidentified methyltransferase catalyzing the production of glycine betaine (GB) from DMG but sharing no homology with the reported sarcosine DMG methyltransferases was predicted to be present in the cells. The results of this study expand our understanding of the physiological role of DMG and its catabolism to sarcosine in C. salexigens.


FEBS Journal ◽  
2019 ◽  
Vol 286 (16) ◽  
pp. 3117-3128 ◽  
Author(s):  
Andreea I. Iorgu ◽  
Tobias M. Hedison ◽  
Sam Hay ◽  
Nigel S. Scrutton

2018 ◽  
Vol 9 ◽  
Author(s):  
Adrie H. Westphal ◽  
Dirk Tischler ◽  
Florian Heinke ◽  
Sarah Hofmann ◽  
Janosch A. D. Gröning ◽  
...  

2017 ◽  
Vol 26 (1) ◽  
pp. 1-12
Author(s):  
Abu Saleh Ahmed ◽  
Seiya Watanabe ◽  
Sinin Hamdan ◽  
Tsutomu Kodaki ◽  
Keisuke Makino

Agricultural waste biomass has already been transferred to bioethanol and used as energy related products, although many issues such as efficiency and productivity still exist to be overcome. In this study, the protein engineering was applied to generate enzymes with completely reversed coenzyme specificity and developed recombinant yeasts containing those engineered enzymes for construction of an efficient biomass-ethanol conversion system. Recombinant yeasts were constructed with the genes encoding a wild type xylose reductase (XR) and the protein engineered xylitol dehydrogenase (XDH) (with NADP) of Pichia stipitis.  These recombinant yeasts were characterized based on the enzyme activity and fermentation ability of xylose to ethanol. The protein engineered enzymes were expressed significantly in Saccharomyces cerevisiae as judged by the enzyme activity in vitro. Ethanol fermentation was measured in batch culture under anaerobic conditions. The significant enhancement was found in Y-ARS strain, in which NADP+-dependent XDH was expressed; 85% decrease of unfavorable xylitol excretion with 26% increased ethanol production, when compared with the reference strain expressing the wild–type XDH.      


Author(s):  
Abu Saleh Ahmed ◽  
Seiya Watanabe ◽  
Sinin Hamdan ◽  
Tsutomu Kodaki ◽  
Keisuke Makino

Agricultural waste biomasshas already been transferred to bioethanol and used as energy related products, although many issues such as efficiency and productivity still exist to be overcome. In this study, the protein engineering was applied to generate enzymes with completely reversed coenzyme specificity and developed recombinant yeasts containing those engineered enzymes for construction of an efficient biomass-ethanol conversion system. Recombinant yeasts were constructed with the genes encoding a wild type xylose reductase (XR)and the protein engineered xylitol dehydrogenase (XDH)(with NADP) of Pichiastipitis. These recombinant yeasts were characterized based on the enzyme activity and fermentation ability of xylose to ethanol. The protein engineered enzymes were expressed significantly in Saccharomycescerevisiaeas judged by the enzyme activity in vitro. Ethanol fermentation was measured in batch culture under anaerobic conditions. The significant enhancement was found in Y-ARSstrain, in which NADP+-dependentXDH was expressed; 85% decrease of unfavorable xylitol excretion with 26% increased ethanol production, when compared with the reference strain expressing the wild–type XDH. 


Sign in / Sign up

Export Citation Format

Share Document