scholarly journals The real field with the rational points of an elliptic curve

2011 ◽  
Vol 211 (1) ◽  
pp. 15-40 ◽  
Author(s):  
Ayhan Günaydın ◽  
Philipp Hieronymi
Author(s):  
Pantelis E Eleftheriou

Abstract The Pila–Wilkie theorem states that if a set $X\subseteq \mathbb{R}^n$ is definable in an o-minimal structure $\mathcal{R}$ and contains ‘many’ rational points, then it contains an infinite semialgebraic set. In this paper, we extend this theorem to an expansion $\widetilde{\mathcal{R}}=\langle {\mathcal{R}}, P\rangle$ of ${\mathcal{R}}$ by a dense set P, which is either an elementary substructure of ${\mathcal{R}}$, or it is $\mathrm{dcl}$-independent, as follows. If X is definable in $\widetilde{\mathcal{R}}$ and contains many rational points, then it is dense in an infinite semialgebraic set. Moreover, it contains an infinite set which is ${\emptyset}$-definable in $\langle \overline{\mathbb{R}}, P\rangle$, where $\overline{\mathbb{R}}$ is the real field. Along the way we introduce the notion of the ‘algebraic trace part’ $X^{{\, alg}}_t$ of any set $X\subseteq \mathbb{R}^n$, and we show that if X is definable in an o-minimal structure, then $X^{{\, alg}}_t$ coincides with the usual algebraic part of X.


2020 ◽  
Vol 82 ◽  
pp. 149-160
Author(s):  
N Kargapolova

Numerical models of the heat index time series and spatio-temporal fields can be used for a variety of purposes, from the study of the dynamics of heat waves to projections of the influence of future climate on humans. To conduct these studies one must have efficient numerical models that successfully reproduce key features of the real weather processes. In this study, 2 numerical stochastic models of the spatio-temporal non-Gaussian field of the average daily heat index (ADHI) are considered. The field is simulated on an irregular grid determined by the location of weather stations. The first model is based on the method of the inverse distribution function. The second model is constructed using the normalization method. Real data collected at weather stations located in southern Russia are used to both determine the input parameters and to verify the proposed models. It is shown that the first model reproduces the properties of the real field of the ADHI more precisely compared to the second one, but the numerical implementation of the first model is significantly more time consuming. In the future, it is intended to transform the models presented to a numerical model of the conditional spatio-temporal field of the ADHI defined on a dense spatio-temporal grid and to use the model constructed for the stochastic forecasting of the heat index.


1973 ◽  
Vol 15 (2) ◽  
pp. 243-256 ◽  
Author(s):  
T. K. Sheng

It is well known that no rational number is approximable to order higher than 1. Roth [3] showed that an algebraic number is not approximable to order greater than 2. On the other hand it is easy to construct numbers, the Liouville numbers, which are approximable to any order (see [2], p. 162). We are led to the question, “Let Nn(α, β) denote the number of distinct rational points with denominators ≦ n contained in an interval (α, β). What is the behaviour of Nn(α, + 1/n) as α varies on the real line?” We shall prove that and that there are “compressions” and “rarefactions” of rational points on the real line.


Author(s):  
Yuan Lo

The character and status are presented together. Others have to play the role. The real situation is to be presented in a simple way. It can be understood how to adapt yourself to the real field. The role of the actress is to be revealed. Students get real-life education in the artificial environment. Performances of speech and expression are improved.


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


Author(s):  
Viliam Ďuriš ◽  
Timotej Šumný

In the modern theory of elliptic curves, one of the important problems is the determination of the number of rational points on an elliptic curve. The Mordel–Weil theorem [T. Shioda, On the Mordell–Weil lattices, Comment. Math. University St. Paul. 39(2) (1990) 211–240] points out that the elliptic curve defined above the rational points is generated by a finite group. Despite the knowledge that an elliptic curve has a final number of rational points, it is still difficult to determine their number and the way how to determine them. The greatest progress was achieved by Birch and Swinnerton–Dyer conjecture, which was included in the Millennium Prize Problems [A. Wiles, The Birch and Swinnerton–Dyer conjecture, The Millennium Prize Problems (American Mathematical Society, 2006), pp. 31–44]. This conjecture uses methods of the analytical theory of numbers, while the current knowledge corresponds to the assumptions of the conjecture but has not been proven to date. In this paper, we focus on using a tangent line and the osculating circle for characterizing the rational points of the elliptical curve, which is the greatest benefit of the contribution. We use a different view of elliptic curves by using Minkowki’s theory of number geometry [H. F. Blichfeldt, A new principle in the geometry of numbers, with some applications, Trans. Amer. Math. Soc. 15(3) (1914) 227–235; V. S. Miller, Use of elliptic curves in cryptography, in Proc. Advances in Cryptology — CRYPTO ’85, Lecture Notes in Computer Science, Vol. 218 (Springer, Berlin, Heidelberg, 1985), pp. 417–426; E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Vol. 670, 1st edn. (Cambridge University Press, 2007)].


2010 ◽  
Vol 75 (4) ◽  
pp. 1441-1461
Author(s):  
Tom Foster

AbstractWe prove that given any first order formula ϕ in the language L′ = {+, ·, <,(fi)iЄI, (ci)iЄI}, where the fi are unary function symbols and the ci are constants, one can find an existential formula Ψ such that φ and Ψ are equivalent in any L′-structure


Sign in / Sign up

Export Citation Format

Share Document