scholarly journals Shelf Fish Larval Abundance Along the West Coast of Baja California During a Period with two El Niño Events 1983-1987

2002 ◽  
Vol 30 (1) ◽  
Author(s):  
René Funes R ◽  
Alejandro Hinojosa M ◽  
Gerardo Aceves M ◽  
Sylvia P. A Jiménez R ◽  
M Hernández R ◽  
...  
Author(s):  
César Flores-Coto ◽  
Faustino Zavala-García ◽  
Rene Funes-Rodríguez ◽  
María de la Luz Espinosa-Fuentes ◽  
Jorge Zavala-Hidalgo

Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

Since the 1970s, there has been a growing global awareness of the El Niño–Southern Oscillation (ENSO) phenomenon, especially in regard to its impacts on humans, natural ecosystems, and agriculture. The three strongest events of these decades (1972–73, 1982–83, and 1997–98) each marked a milestone in this progression. To be sure, not all climate extremes during any given ENSO year are necessarily due to that phenomenon; for example, the intense drought that occurred in 1982–83 in the West African Sahel does not appear to be causally linked to the strong ENSO event of that period (Glantz, 1987). However, even unrelated climate anomalies can exacerbate the effects of an El Niño or La Niña on world food supplies. Here we summarize the major effects of the three most recent very strong El Niño events (see box 4.1) with a focus on their agricultural manifestations. Table 4.1 summarizes the effects by region and continent and for the world food system as a whole. Evolving understanding of ENSO (and its related phenomena) appears to be contributing to the development of improved resilience to such major climate shocks in some regions (see chapter 6 for use of ENSO predictions in agriculture and chapter 8 on building adaptive capacity). However, continuing progress in affected regions is needed for agriculture to withstand (or benefit from) very strong El Niño events in the future, especially since global climate change may be affecting conditions as well. The El Niño of 1972–73 awakened international attention to the ENSO cycle. Besides the failure of the fishery industry in Peru, there were droughts, floods, and food shortages in various locations around the world that also appeared to be associated with El Niño. Consequently, scientists and the public began to realize that El Niño teleconnections and their impacts could extend beyond the West Coast of South America (Glantz, 2001). During the El Niño event of 1972–73, the reduced anchoveta harvest, combined with overfishing, caused the collapse of the Peruvian fishmeal industry and the dislocation of entire fishing communities.


2021 ◽  
Author(s):  
Hui Xu ◽  
Lei Chen ◽  
Wansuo Duan

AbstractThe optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial error makes a moderate El Niño event to be predicted as an extremely strong event.


2021 ◽  
Author(s):  
Shouwen Zhang ◽  
Hui Wang ◽  
Hua Jiang ◽  
Wentao Ma

AbstractThe late spring rainfall may account for 15% of the annual total rainfall, which is crucial to early planting in southeastern China. A better understanding of the precipitation variations in the late spring and its predictability not only greatly increase our knowledge of related mechanisms, but it also benefits society and the economy. Four models participating in the North American Multi-Model Ensemble (NMME) were selected to study their abilities to forecast the late spring rainfall over southeastern China and the major sources of heavy rainfall from the perspective of the sea surface temperature (SST) field. We found that the models have better abilities to forecast the heavy rainfall over the middle and lower reaches of the Yangtze River region (MLYZR) with only a 1-month lead time, but they failed for a 3-month lead time since the occurrence of the heavy rainfall was inconsistent with the observations. The observations indicate that the warm SST anomalies in the tropical eastern Indian Ocean are vital to the simultaneously heavy rainfall in the MLYZR in May, but an El Niño event is not a necessary condition for determining the heavy rainfall over the MLYZR. The heavy rainfall over the MLYZR in May is always accompanied by warming of the northeastern Indian Ocean and of the northeastern South China Sea (NSCS) from April to May in the models and observations, respectively. In the models, El Niño events may promote the warming processes over the northeastern Indian Ocean, which leads to heavy rainfall in the MLYZR. However, in the real world, El Niño events are not the main reason for the warming of the NSCS, and further research on the causes of this warming is still needed.


2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document