The inactive and active forms of the pyrroloquinoline quinone-alcohol dehydrogenase of Gluconacetobacter diazotrophicus: a comparative study
<em>Gluconacetobacter diazotrophicus</em> as a member of the acetic acid bacteria group, oxidize alcohol to acetic acid through two sequential reactions catalyzed by the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase, both enzymes are membrane-bound and oriented to the periplasmic space. ADH is a quinohemoprotein carrying one pyrroloquinoline quinone moiety, one [2Fe:2S] cluster and four c-type cytochromes, as prosthetic groups. In recent years has been described the presence of the inactive ADH (ADHi) in the acetic acid bacteria. In the present review we make a comparative study of the molecular and catalytic properties of the active and inactive forms of ADH purified from <em>G. diazotrophicus</em>, variation in the redox state of enzymes <em>as purified </em>could explain the notorious differences seen in the activity power of the compared enzymes.