gluconacetobacter diazotrophicus
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 35)

H-INDEX

27
(FIVE YEARS 3)

Revista CERES ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 40-47
Author(s):  
Nelson Ceballos-Aguirre ◽  
Gloria María Restrepo ◽  
Alejandro Hurtado-Salazar ◽  
Jorge Andrés Cuellar ◽  
Óscar Julián Sánchez

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1231
Author(s):  
Katyanne Wanderley ◽  
Dayse Sousa ◽  
Gabriel Silva ◽  
Josemir Maia ◽  
Maria Silva ◽  
...  

The biosynthesis of exopolysaccharides (EPSs) is essential for endophytic bacterial colonisation in plants bacause this exopolymer both protects bacterial cells against the defence and oxidative systems of plants and acts on the plant colonisation mechanism in Gluconacetobacter diazotrophicus. The pathway involved in the biosynthesis of bacterial EPS has not been fully elucidated, and several areas related to its molecular regulation mechanisms are still lacking. G. diazotrophicus relies heavily on EPS for survival indirectly by protecting plants from pathogen attack as well as for endophytic maintenance and adhesion in plant tissues. Here, we report that EPS from G. diazotrophicus strain Pal5 is a signal polymer that controls its own biosynthesis. EPS production depends on a bacterial tyrosine (BY) kinase (Wzc) that consists of a component that is able to phosphorylate a glycosyltranferase or to self-phosphorylate. EPS interacts with the extracellular domain of Wzc, which regulates kinase activity. In G. diazotrophicus strains that are deficient in EPS production, the Wzc is rendered inoperative by self-phosphorylation. The presence of EPS promotes the phosphorylation of a glycosyltransferase in the pathway, thus producing EPS. Wzc-mediated self-regulation is an attribute for the control of exopolysaccharide biosynthesis in G. diazotrophicus.


Author(s):  
Xuan Yang ◽  
Kathleen A. Hill ◽  
Ryan S. Austin ◽  
Lining Tian

Alternatives to synthetic nitrogen fertilizer are needed to reduce the costs of crop production and offset environmental damage. Nitrogen-fixing bacterium Gluconacetobacter diazotrophicus has been proposed as a possible biofertilizer for monocot crop production. However, the colonization of G. diazotrophicus in most monocot crops is limited and deep understanding of the response of host plants to G. diazotrophicus colonization is still lacking. In this study, the molecular response of the monocot plant model Brachypodium distachyon was studied during G. diazotrophicus root colonization. The gene expression profiles of B. distachyon root tissues colonized by G. diazotrophicus were generated via next-generation RNA sequencing, and investigated through gene ontology and metabolic pathway analysis. The RNA sequencing results indicated that Brachypodium is actively involved in G. diazotrophicus colonization via cell wall synthesis. Jasmonic acid, ethylene, gibberellin biosynthesis. nitrogen assimilation, and primary and secondary metabolite pathways are also modulated to accommodate and control the extent of G. diazotrophicus colonization. Cellulose synthesis is significantly downregulated during colonization. The loss of function mutant for Brachypodium cellulose synthase 8 (BdCESA8) showed decreased cellulose content in xylem and increased resistance to G. diazotrophicus colonization. This result suggested that the cellulose synthesis of the secondary cell wall is involved in G. diazotrophicus colonization. The results of this study provide insights for future research in regard to gene manipulation for efficient colonization of nitrogen-fixing bacteria in Brachypodium and monocot crops. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Author(s):  
Mariana Ramos Leandro ◽  
Leandro Fernandes Andrade ◽  
Luciano de Souza Vespoli ◽  
Fabiano Silva Soares ◽  
Julia Rosa Moreira ◽  
...  

2021 ◽  
pp. 104728
Author(s):  
María Sol Srebot ◽  
Josefina Tano ◽  
Analía Carrau ◽  
Matías Damián Ferretti ◽  
María Laura Martínez ◽  
...  

2021 ◽  
Vol 788 (1) ◽  
pp. 012171
Author(s):  
P Saranraj ◽  
A Jayaprakash ◽  
V D Devi ◽  
A R M Al-Tawaha ◽  
A R Al-Tawaha

2021 ◽  
Vol 9 (4) ◽  
pp. 870
Author(s):  
Muhammad Aammar Tufail ◽  
María Touceda-González ◽  
Ilaria Pertot ◽  
Ralf-Udo Ehlers

Plant growth promoting endophytic bacteria, which can fix nitrogen, plays a vital role in plant growth promotion. Previous authors have evaluated the effect of Gluconacetobacter diazotrophicus Pal5 inoculation on plants subjected to different sources of abiotic stress on an individual basis. The present study aimed to appraise the effect of G. diazotrophicus inoculation on the amelioration of the individual and combined effects of drought and nitrogen stress in maize plants (Zea mays L.). A pot experiment was conducted whereby treatments consisted of maize plants cultivated under drought stress, in soil with a low nitrogen concentration and these two stress sources combined, with and without G. diazotrophicus seed inoculation. The inoculated plants showed increased plant biomass, chlorophyll content, plant nitrogen uptake, and water use efficiency. A general increase in copy numbers of G. diazotrophicus, based on 16S rRNA gene quantification, was detected under combined moderate stress, in addition to an increase in the abundance of genes involved in N fixation (nifH). Endophytic colonization of bacteria was negatively affected by severe stress treatments. Overall, G. diazotrophicus Pal5 can be considered as an effective tool to increase maize crop production under drought conditions with low application of nitrogen fertilizer.


2021 ◽  
Vol 244 ◽  
pp. 126651
Author(s):  
Carlos M. Dos-Santos ◽  
Wiglison B.A. Nascimento ◽  
Bruna P. do Nascimento ◽  
Stefan Schwab ◽  
José I. Baldani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document