scholarly journals Sources of organic matter affect depth-related microbial community composition in sediments of Lake Erhai, Southwest China

2014 ◽  
Vol 73 (AoP) ◽  
Author(s):  
Wei Xiong ◽  
Ping Xie ◽  
Shengrui Wang ◽  
Yuan Niu ◽  
Xi Yang ◽  
...  
2020 ◽  
Author(s):  
Rachel hasler ◽  
Mark pawlett ◽  
Jim harris ◽  
Helen bostock ◽  
Marc redmile-gordon

<p>The type of soil organic amendment selected can have profound implications for carbon cycling processes in soils. Understanding the link between this choice and its effect on the soil microbiome will improve our understanding of the capacity of these materials to improve carbon sequestration and cycling dynamics. Understanding and facilitating the lifestyle strategies of microorganisms processing organic matter is essential to improving our understanding of the terrestrial carbon cycle. This research focuses on utilising organic amendments to alter the indigenous soil microbial community composition and function to improve the capacity of the soil to cycle and store carbon in horticultural soils.  The effects of annual application of various organic fertilisers (peat, bracken, bark, horse manure, garden compost) in a long-term (10year) field experiment were explored. Sampling was completed pre and post application of organic matter within one season (following 10 years of applications) to identify which organic amendment was more effective in producing benefits to plants through improved soil organic matter and which amendments provide the greatest legacy effect on carbon cycling. The response of the soil microbial community composition (phospholipid fatty acid analysis) and carbon functional cycling dynamics (respiration using MicroResp™) were determined with a view to improving our understanding of the interaction between the materials applied and microbial processes. PCA of the MicroResp™ data identified that all treatments had a different functional profile compared to the control[PM1]  with peat being significantly different from all other treatments. Horse manure and bark differed significantly within a single growing season; prior and post organic matter addition in spring 2019.  Microbial biomass measurements for garden compost and horse manure were significantly higher following organic matter addition compared to all other treatments and the control[PM2] .  All treatments had a significant effect [PM3] on hot water extractable carbon and total carbon. Peat had a significantly different effect[PM4] , when compared to other treatments, on the soil PLFA profile and bark application significantly increased [PM5] the neutral lipid (NLFA) biomarker 16:1ω5.  Bark and horse manure application both significantly increased PLFA fungal biomarker 18:2ω6,9. No significant differences were found between the fungal/bacterial ratios of the organic matter additions prior to being added to the soil. These findings show that altering the resources available to the soil microbial community has a significant impact on soil microbial community composition and microbially mediated carbon cycling functionality. Increasing our understanding of how soil functions are altered by land management decisions will enable better informed predictions of the long-term benefits of organic matter applications on carbon sequestration and cycling dynamics.</p>


2021 ◽  
Author(s):  
Sven P. Tobias-Hünefeldt ◽  
Stephen R. Wing ◽  
Federico Baltar ◽  
Sergio E. Morales

Abstract Fjords are semi-enclosed marine systems with unique physical conditions that influence microbial community composition and structure. Pronounced organic matter and physical condition gradients within fjords provide a natural laboratory for the study of changes in microbial phylogeny and metabolic potential in response to environmental conditions. Photosynthetic production in euphotic zones sustains deeper aphotic microbial activity via organic matter sinking, augmented by large terrestrial inputs. We profiled microbial functional potential (Biolog Ecoplates), bacterial abundance, heterotrophic production (3H-Leucine incorporation), and prokaryotic/eukaryotic community composition (16S and 18S rRNA amplicon gene sequencing) to link metabolic potential, activity, and community composition to known community drivers. Similar factors shaped metabolic potential, activity and community (prokaryotic and eukaryotic) composition across surface/near surface sites. However, increased metabolic diversity at near bottom (aphotic) sites reflected an organic matter influence from sediments. Photosynthetically produced particulate organic matter shaped the upper water column community composition and metabolic potential. In contrast, microbial activity at deeper aphotic waters were strongly influenced by other organic matter imput than sinking marine snow (e.g. sediment resuspension of benthic organic matter, remineralisation of terrestrially derived organic matter, etc.), severing the link between phylogeny and metabolic potential. Taken together, different organic matter sources shape microbial activity, but not community composition, in New Zealand fjords.


2021 ◽  
Author(s):  
Anders Dalhoff Bruhn ◽  
Colin A. Stedmon ◽  
Jérôme Comte ◽  
Atsushi Matsuoka ◽  
Neik Jesse Speetjens ◽  
...  

<p>Climate warming is accelerating erosion rates along permafrost-dominated Arctic coasts. To study the impact of erosion on marine microbial community composition and growth in the Arctic coastal zone, dissolved organic matter (DOM) from three representative glacial landscapes (fluvial, lacustrine and moraine) along the Yukon coastal plain, are provided as substrate to marine bacteria using a chemostat setup. Our results indicate that chemostat cultures with a flushing rate of approximately a day provide comparable DOM bioavailability estimates to those from bottle experiments lasting weeks to months. DOM composition (inferred from UV-Visible spectroscopy) and biodegradability (inferred from DOC concentration, bacterial production and respiration) significantly differed between the three glacial deposit types. DOM from fluvial and moraine deposit types shows more terrestrial characteristics with lower aromaticity (S<sub>R</sub>: 0.63 (±0.02), SUVA<sub>254</sub>: 1.65 (±0.06) respectively S<sub>R</sub>: 0.68 (±0.00), SUVA<sub>254</sub>: 1.17 (±0.06)) compared to the lacustrine deposit type (S<sub>R</sub>: 0.71 (±0.02), SUVA<sub>254</sub>: 2.15 (±0.05)). The difference in composition of DOM corresponds with the development of three distinct microbial communities, with a dominance of Alphaproteobacteria for fluvial and lacustrine deposit types (relative abundance 0.67 and 0.87 respectively) and a dominance of Gammaproteobacteria for moraine deposit type (relative abundance 0.88). Bacterial growth efficiency (BGE) is 66% for moraine-derived DOM, while 13% and 28% for fluvial-derived and lacustrine-derived DOM respectively. The three microbial communities therefore differ in their net effect on DOM utilization. The higher BGE value for moraine-derived DOM was found to be due to a larger proportion of labile colourless DOM. The results from this study, therefore indicate a substrate control of marine microbial community composition and activities, suggesting that the effect of permafrost thaw and erosion in the Arctic coastal zone will depend on subtle differences in DOM related to glacial deposit types. These differences further determines the speed and extent of DOM mineralization and thereby carbon channelling into biomass in the microbial food web. We therefore conclude that marine microbes strongly respond to the input of terrestrial DOM released during coastal erosion of Arctic glacial landscapes.</p>


Sign in / Sign up

Export Citation Format

Share Document