scholarly journals HUNTINGTON, STORIA DI UN GENE ANTICO

Author(s):  
Elena Cattaneo

Huntington is the gene that mutates in Huntington’s Disease. Our laboratory is studying its physiological function during development and in adulthood and how its mutation causes the death of the striatal and cortical neurons with the ultimate goal of contributing toward the identification of a therapy.

2016 ◽  
Vol 113 (38) ◽  
pp. E5655-E5664 ◽  
Author(s):  
Xiaobei Zhao ◽  
Xu-Qiao Chen ◽  
Eugene Han ◽  
Yue Hu ◽  
Paul Paik ◽  
...  

Corticostriatal atrophy is a cardinal manifestation of Huntington’s disease (HD). However, the mechanism(s) by which mutant huntingtin (mHTT) protein contributes to the degeneration of the corticostriatal circuit is not well understood. We recreated the corticostriatal circuit in microfluidic chambers, pairing cortical and striatal neurons from the BACHD model of HD and its WT control. There were reduced synaptic connectivity and atrophy of striatal neurons in cultures in which BACHD cortical and striatal neurons were paired. However, these changes were prevented if WT cortical neurons were paired with BACHD striatal neurons; synthesis and release of brain-derived neurotrophic factor (BDNF) from WT cortical axons were responsible. Consistent with these findings, there was a marked reduction in anterograde transport of BDNF in BACHD cortical neurons. Subunits of the cytosolic chaperonin T-complex 1 (TCP-1) ring complex (TRiC or CCT for chaperonin containing TCP-1) have been shown to reduce mHTT levels. Both CCT3 and the apical domain of CCT1 (ApiCCT1) decreased the level of mHTT in BACHD cortical neurons. In cortical axons, they normalized anterograde BDNF transport, restored retrograde BDNF transport, and normalized lysosomal transport. Importantly, treating BACHD cortical neurons with ApiCCT1 prevented BACHD striatal neuronal atrophy by enhancing release of BDNF that subsequently acts through tyrosine receptor kinase B (TrkB) receptor on striatal neurons. Our findings are evidence that TRiC reagent-mediated reductions in mHTT enhanced BDNF delivery to restore the trophic status of BACHD striatal neurons.


2021 ◽  
Author(s):  
Marija Fjodorova ◽  
Zoe Noakes ◽  
Daniel C. De La Fuente ◽  
Adam C. Errington ◽  
Meng Li

SummaryBackgroundStriatal medium spiny neurons (MSNs) are preferentially lost in Huntington’s disease. Genomic studies also implicate a direct role for MSNs in schizophrenia, a psychiatric disorder known to involve cortical neuron dysfunction. It remains unknown whether the two diseases share similar MSN pathogenesis or if neuronal deficits can be attributed to cell type-dependent biological pathways. Transcription factor BCL11B, which is expressed by all MSNs and deep layer cortical neurons, was recently proposed to drive selective neurodegeneration in Huntington’s disease and identified as a candidate risk gene in schizophrenia.MethodsUsing human stem cell-derived neurons lacking BCL11B as a model, we investigated cellular pathology in MSNs and cortical neurons in the context of these disorders. Integrative analyses between differentially expressed transcripts and published GWAS datasets identified cell type-specific disease-related phenotypes.ResultsWe uncover a role for BCL11B in calcium homeostasis in both neuronal types, while deficits in mitochondrial function and protein kinase A (PKA)-dependent calcium transients are detected only in MSNs. Moreover, BCL11B-deficient MSNs display abnormal responses to glutamate and fail to integrate dopaminergic and glutamatergic stimulation, a key feature of striatal neurons in vivo. Gene enrichment analysis reveals overrepresentation of disorder risk genes among BCL11B-regulated pathways, primarily relating to cAMP-PKA-calcium signaling axis and synaptic signaling.ConclusionsOur study indicates that Huntington’s disease and schizophrenia are likely to share neuronal pathogenesis where dysregulation of intracellular calcium levels is found in both striatal and cortical neurons. In contrast, reduction in PKA signaling and abnormal dopamine/glutamate receptor signaling is largely specific to MSNs.


2001 ◽  
Vol 31 (1) ◽  
pp. 3-14 ◽  
Author(s):  
L. W. HO ◽  
J. CARMICHAEL ◽  
J. SWARTZ ◽  
A. WYTTENBACH ◽  
J. RANKIN ◽  
...  

Background. Huntington's disease (HD) is a fatal neurodegenerative disorder with an autosomal dominant mode of inheritance. It leads to progressive dementia, psychiatric symptoms and an incapacitating choreiform movement disorder, culminating in premature death. HD is caused by an increased CAG repeat number in a gene coding for a protein with unknown function, called huntingtin. The trinucleotide CAG codes for the amino acid glutamine and the expanded CAG repeats are translated into a series of uninterrupted glutamine residues (a polyglutamine tract).Methods. This review describes the epidemiology, clinical symptomatology, neuropathological features and genetics of HD. The main aim is to examine important findings from animal and cellular models and evaluate how they have enriched our understanding of the pathogenesis of HD and other diseases caused by expanded polyglutamine tracts.Results. Selective death of striatal and cortical neurons occurs. It is likely that the HD mutation confers a deleterious gain of function on the protein. Neuronal intranuclear inclusions containing huntingtin and ubiquitin develop in patients and transgenic mouse models of HD. Other proposed mechanisms contributing to neuropathology include excitotoxicity, oxidative stress, impaired energy metabolism, abnormal protein interactions and apoptosis.Conclusions. Although many interesting findings have accumulated from studies of HD and other polyglutamine diseases, there remain many unresolved issues pertaining to the exact roles of intranuclear inclusions and protein aggregates, the mechanisms of selective neuronal death and delayed onset of illness. Further knowledge in these areas will inspire the development of novel therapeutic strategies.


Cell Reports ◽  
2018 ◽  
Vol 25 (4) ◽  
pp. 1081-1096.e6 ◽  
Author(s):  
Shagun R. Mehta ◽  
Colton M. Tom ◽  
Yizhou Wang ◽  
Catherine Bresee ◽  
David Rushton ◽  
...  

2019 ◽  
Vol 30 (4) ◽  
pp. 2372-2388 ◽  
Author(s):  
Elissa J Donzis ◽  
Ana María Estrada-Sánchez ◽  
Tim Indersmitten ◽  
Katerina Oikonomou ◽  
Conny H Tran ◽  
...  

Abstract Huntington’s disease (HD) is a neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric disturbances. Although evidence indicates that projections from motor cortical areas play a key role in the development of dysfunctional striatal activity and motor phenotype, little is known about the changes in cortical microcircuits and their role in the development of the HD phenotype. Here we used two-photon laser-scanning microscopy to evaluate network dynamics of motor cortical neurons in layers II/III in behaving transgenic R6/2 and knock-in Q175+/− mice. Symptomatic R6/2 mice displayed increased motion manifested by a significantly greater number of motion epochs, whereas symptomatic Q175 mice displayed decreased motion. In both models, calcium transients in symptomatic mice displayed reduced amplitude, suggesting decreased bursting activity. Changes in frequency were genotype- and time-dependent; for R6/2 mice, the frequency was reduced during both motion and nonmotion, whereas in symptomatic Q175 mice, the reduction only occurred during nonmotion. In presymptomatic Q175 mice, frequency was increased during both behavioral states. Interneuronal correlation coefficients were generally decreased in both models, suggesting disrupted interneuronal communication in HD cerebral cortex. These results indicate similar and contrasting effects of the HD mutation on cortical ensemble activity depending on mouse model and disease stage.


Sign in / Sign up

Export Citation Format

Share Document