Embryo sac development in some South African Lantana species (Verbenaceae)

Bothalia ◽  
1984 ◽  
Vol 15 (1/2) ◽  
pp. 161-166 ◽  
Author(s):  
J. J. Spies

Evidence that the South African Lantana camara L. complex only produces sexual embryo sacs is provided. It is shown that the archesporium occasionally divides mitotically and that both archesporia form tetrads. The chalazal megaspore of one tetrad and the micropylar megaspore of the second tetrad develop into Polygonum type embryo sacs. L. rugosa Thunb. also forms Polygonum type embryo sacs. The L. rugosa embryo sac has a much more densely packed cytoplasm, smaller vacuole and the position of the polar nuclei differs from that of the L. camara embryo sac. It is possible to distinguish between  L. camara and  L. rugosa on their embryo sac morphology alone.

Bothalia ◽  
1982 ◽  
Vol 14 (1) ◽  
pp. 113-117 ◽  
Author(s):  
J. J. Spies ◽  
C. H. Stirton

Twenty embryo sacs from each of 20 different  Lantana camara L. cultivars naturalized in South Africa were examined. The normal sexual embryo sacs were monosporic 8-nucleated embryo sacs of the polygonum type and were encountered in 55% of the material examined. Several deviations from this pattern were recorded. Occasionally one of the nuclei failed to develop into a synergid, resulting in three polar nuclei. Contrary to published information, the antipodal cells did not increase in size, nor was there an increase in the number of nuclei per cell. Although the occurrence of sexuality is confirmed, no definite evidence exists for the occurrence of apomixis. The occurrence of two embryo sacs per locule might be the result of either apospory or of sexuality whereby two embryo sacs were formed from two megaspores.


1962 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
GL Davis

Cotula australis has a discoid heterogamous capitulum in which the outermost three whorls of florets are female and naked. The bisexual disk florets are fully fertile and have a four-lobed corolla with four shortly epipetalous stamens. The anthers contain only two microsporangia. Wall formation and microsporogenesis are described and the pollen grains are shed at the three-celled condition. The ovule is teguinucellate and the hypodermal archesporial cell develops directly as the megaspore mother cell. Megasporogenesis is normal and the monosporio embryo sac develops from the chalazal megaspore. Breakdown of the nucellar epidermis takes place when the embryo sac is binucleate and its subsequent development follows the Polygonum type. The synergids extend deeply into the micropyle and one persists until late in embryogeny as a haustorium. The development of the embryo is of the Asterad type, and the endosperm is cellular. C. coronopifolia agrees with C. australis in the presence of only two microsporangia in each anther and the development of a synergid haustorium.


Bothalia ◽  
1994 ◽  
Vol 24 (1) ◽  
pp. 101-105 ◽  
Author(s):  
A. Strydom ◽  
J. J. Spies

Chloris virgata Sw., Cynodon dactylon (L.) Pers., Harpochloa falx (L. f.) Kuntze, and Tragus berteronianus Schult. have a Polygonum type of embryo sac development. Unreduced embryo sacs were found in Eustachys paspaloides (Vahl) Lanza Mattei,  Harpochloa falx, and  Rendlia altera (Rendle) Chiov. Both facultative and obligate apomixis were observed. The Hieracium type of embryo sac development was observed in the aposporic specimens.


1963 ◽  
Vol 11 (2) ◽  
pp. 152 ◽  
Author(s):  
G Want

In Wahlenbergia bicolor, the anther wall is composed of four layers: epidermis, endothecium, middle layer, and tapetum. Wall formation and microsporogenesis are described, and the pollen grains are shed at the two-celled condition. The ovules are tenuinucellate, with a hypodermal archesporial cell which develops directly as the megaspore mother cell. Megasporogenesis is normal, and a monosporic eight-nucleate embryo sac of the most common Polygonum type develops from the chalazal megaspore. The antipodals degenerate before fertilization. The development of the embryo is of the solanad type. A suspected case of polyembryony was observed. The endosperm is cellular from its inception, and so conforms to the Codonopsis type. A micropylar and a chalazal haustoriurn, both consisting of two uninucleate cells, are formed from the endosperm. Comparative studies were made with a known but as yet undescribed coastal species of Wahlenbergia, and no differences were found.


1970 ◽  
Vol 48 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Jack Maze ◽  
Lesly R. Bohm ◽  
Lyle E. Mehlenbacher Jr.

The ovules of Stipa tortilis and Oryzopsis miliacea are hemianatropous, bitegmetic, and pseudocrassinucellate (sensu Davis 1966). The hemianatropous shape of the ovule is the result of characteristic patterns of cell division and enlargement in the chalazal area and areas alongside the embryo sac. Embryo sac development in both is Polygonum-type and both have proliferating antipodals. Endosperm is nuclear, although in O. miliacea it is atypical in that nuclear division is synchronous within one portion of the embryo sac, e.g. micropylar, but not synchronous between different portions of the embryo sac, e.g., micropylar and chalazal. Differences in ovule initiation, persistence of the outer integument, fate of the inner integument, nature of the nucellus, shape of the embryo sac, nature of the synergids, cytoplasm of the egg, polar nuclei, and endosperm exist between these two taxa. Both synergids of O. miliacea undergo changes before fertilization and one degenerates before fertilization. The pollen tube enters the embryo sac at the base of the persistent synergid. There is presently insufficient embryological data to permit meaningful speculation on relationships between Stipa and Oryzopsis. Embryologically, Stipa and Oryzopsis are festucoid grasses, as much other evidence indicates. Embryo sac development in the Gramineae is more similar to that of the Restionaceae than to that of the Cyperaceae. This is in contradiction to recent speculations on the relationships of the Gramineae.


1969 ◽  
Vol 47 (12) ◽  
pp. 1891-1893 ◽  
Author(s):  
B. V. Virdi ◽  
G. W. Eaton

Embryo sac development was studied in two clones of salmonberry. U.B.C. clones I-37 and II-4 were used in the study. Clone II-4 is a ruby-fruited seedling of a gold-fruited parent. Clone I-37 is the gold-fruited seedling of a ruby-fruited parent. Reproduction was sexual and embryo development normal in this diploid species. Embryo sac development was of the normal or Polygonum type and abnormalities such as multiple embryo sacs and abbreviated integument were also found. Very generally, the development of embryo sacs in both clones was similar.


Phytotaxa ◽  
2018 ◽  
Vol 350 (3) ◽  
pp. 235
Author(s):  
YUAN-YUAN SONG ◽  
YUN-YUN ZHAO ◽  
JIA-XI LIU

In this study, we systematically studied the microsporogenesis, megasporogenesis, as well as development of male and female gametophyte of Polygonatum macropodum and P. sibiricum using the conventional paraffin sectioning technique. Our results showed that 1) microsporocytes cytokinesis is of the successive type; 2) microspore tetrads are tetragonal or tetrahedral; 3) mature pollen grains are two-celled or three-celled; 4) ovary is superior and trilocular, with axile placentas bearing 4–6 anatropous per locule; 5) ovules are anatropous, crassinucellate and bitegmic, with micropyle formed by the inner integument; 6) megaspore tetrads are linear or T-shaped; 7) embryo sac development is typically of Polygonum-type. The embryological features of Polygonatum support its inclusion of Asparagaceae in Asparagales.


Caryologia ◽  
2021 ◽  
Vol 74 (3) ◽  
pp. 91-97
Author(s):  
Ciler Kartal ◽  
Nuran Ekici ◽  
Almina Kargacıoğlu ◽  
Hazal Nurcan Ağırman

In this study gynoecium, megasporogenesis, megagametogenesis and female gametophyte of Gladiolus italicus Miller were examined cytologically and histologically by using light microscopy techniques. Ovules of G. italicus are of anatropous, bitegmic and crassinucellate type. Embryo sac development is of monosporic Polygonum type. Polar nuclei fuse before fertilization to form a secondary nucleus near the antipodals. The female gametophyte development of G. italicus was investigated for the first time with this study.


2006 ◽  
Vol 54 (6) ◽  
pp. 531 ◽  
Author(s):  
M. Gotelli ◽  
B. Galati ◽  
P. Hoc

Macroptilium arenarium (Bacigalupo) S.I.Drewes & R.A.Palacios produces two floral morphs, aerial chasmogamous flowers and cleistogamous flowers in geophyte racemes. A comparative study of the sporogenesis, gametogenesis and the development of the related sporophytic structures in both floral morphs is reported. The anther is tetrasporangiate, its wall consists of epidermis, endothecium, one or two middle layers and an uninucleate secretory tapetum. The mature endothecium presents fibrilar thickenings that are more developed in cleistogamous flowers. Pollen grains are tricolporate, angulaperturate, and are shed at bicellular stage. The ovule is crassinucelate, bitegmic and anacampylotropous. Megaspore tetrads with linear arrangement have been observed in chasmogamous flowers, whereas only megaspore dyads have been found in cleistogamous flowers. In both floral morphs the chalazal megaspore develops into an embryo sac of Polygonum type. Apomixis is considered as a possible replacement for sexual reproduction in cleistogamous flowers.


Sign in / Sign up

Export Citation Format

Share Document