chloris virgata
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261788
Author(s):  
Bhagirath Singh Chauhan ◽  
Mark Congreve ◽  
Gulshan Mahajan

Chloris virgata has become one of the most difficult glyphosate-resistant (GR) grass weeds in summer fallows in the eastern region of Australia. It germinates in several cohorts following rainfall events; therefore, growers are often tempted to wait for most of the weeds to emerge before herbicide application. However, by that time, some seedlings have reached an advanced stage and there is limited information on the efficacy and reliability of alternate herbicides when targeting large plants of GR C. virgata. A series of experiments were conducted to determine the efficacy of alternate herbicides for the control of GR C. virgata. Haloxyfop (80 g a.i. ha-1) on its own, in mixtures, or sequential applications of haloxyfop and paraquat or glufosinate provided 97 to 100% mortality of the 8–10 leaf stage plants. Glufosinate (1500 g a.i. ha-1) also provided complete control of plants at this growth stage. For larger plants at the 24–28 leaf stage, glufosinate, with or without additional tank-mixed adjuvants, generally did not provide full control, however did show very high levels of biomass reduction and panicle suppression at application rates of 750 or 1500 g a.i. ha-1. Haloxyfop (40 to 160 g a.i. ha-1) and clethodim (180 g a.i. ha-1) on their own achieved 96 to 100% mortality at this growth stage. When applied to large plants (40–50 leaf stage), a tank-mix of isoxaflutole plus paraquat demonstrated significantly higher levels of plant mortality and biomass reduction than either herbicide used alone, and this mixture appears to be synergistic when tested via the Colby equation for synergy or antagonism. Plant mortality was greater (83%) when isoxaflutole (75 g a.i. ha-1) plus paraquat (300 g a.i. ha-1) was taken up through the foliage and soil, compared with the foliage alone. This study identified alternative herbicide options for large plants of GR C. virgata.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1632
Author(s):  
Gulshan Mahajan ◽  
Bhagirath S. Chauhan

Chloris virgata is a problematic weed in mungbean crops due to its high seed production, resistance to glyphosate and high dispersal ability. Pot and field experiments were conducted in 2020 and 2021 to evaluate a range of preemergent (PRE) herbicides for C. virgata control in mungbean. In the field and pot studies, isoxaflutole 75 g ai ha−1 caused crop injury, and in the field experiment, it reduced mungbean yield by 61% compared with the best treatment (pyroxasulfone 100 g ai ha−1). In the field and pot experiments, dimethenamid-P 720 g ai ha−1, pyroxasulfone 100 g ai ha−1 and S-metolachlor 1400 g ai ha−1 provided >88% control of C. virgata (for reduced biomass) and in the field experiment, these herbicides resulted in improved yield by 230%, 270% and 170%, respectively, compared with nontreated control (250 kg ha−1). Similarly, pendimethalin 1000 g ai ha−1 and trifluralin 600 g ai ha−1 provided >89% control (biomass) of C. virgata, and in the field experiment, these resulted in improved yields of 230% and 160%, respectively, compared with the nontreated control. PRE herbicides such as diuron 750 g ai ha−1, linuron 1100 g ai ha−1, metribuzin 360 g ha−1, terbuthylazine 750 g ai ha−1, imazapic 48 g ai ha−1 and imazethapyr 70 g ha−1 although did not cause crop injury; however, these herbicides did not control C. virgata. Flumioxazin 90 g ai ha−1 caused reduced biomass of C. virgata by 80% compared with the nontreated control, and in the field experiment, it resulted in improved yield by 140% compared with the nontreated control. This study suggests the potential use of herbicides, such as dimethenamid-P, pyroxasulfone and S-metolachlor in addition to pendimethalin and trifluralin, for C. virgata control in mungbean. Further studies are needed to determine the efficacy of dimethenamid-P, S-metolachlor and pyroxasulfone for controlling other troublesome weeds in mungbean.


2021 ◽  
pp. 1-20
Author(s):  
Jeff Werth ◽  
David Thormby ◽  
Michelle Keenan ◽  
James Hereward ◽  
Bhagirath Singh Chauhan

XtendFlexTM cotton with resistance to glyphosate, glufosinate and dicamba may become available in Australia. Resistance to these herbicides enables two additional modes of action to be applied in crop. The double knock strategy, typically glyphosate followed by paraquat, has been a successful tactic for control of glyphosate-resistant in fallow situations in Australia. Glufosinate is a contact herbicide, and may be useful as the second herbicide in a double knock for use in XtendFlexTM cotton crops. We tested the effectiveness of glufosinate applied at intervals of 1, 3, 7, and 10 d after initial applications of glyphosate, dicamba, clethodim and glyphosate mixtures with dicamba or clethodim on glyphosate-resistant and susceptible populations of Conyza bonariensis, Sonchus oleraceus, Chloris virgata, Chloris truncata and Echinochloa colona. Effective treatments for Conyza bonariensis with 100% control were dicamba and glyphosate+dicamba followed by glufosinate independent of the interval between applications. Sonchus oleraceus was effectively controlled in Experiment 1 by all treatments. However, in Experiment 2 effective treatments were dicamba and glyphosate+dicamba followed by glufosinate (99.3 – 100% control). Timing of the follow-up glufosinate did not affect the control achieved. Consistent control of Chloris virgata was achieved with glyphosate, clethodim or glyphosate+clethodim followed by glufosinate at 7 and 10 d intervals (99.7 – 100% control). Control of Chloris truncata was inconsistent. The best treatment for C. truncata was glyphosate+clethodim followed by glufosinate 10 d later (99.8 – 100% control). Echinochloa colona was effectively controlled with all treatments except for glyphosate on the glyphosate-resistant population. Additional in-crop use of glufosinate and dicamba should be beneficial for weed management in XtendFlexTM cotton crops, when utilising the double knock tactic with glufosinate. For effective herbicide resistance management, it is important that these herbicides be used in addition to, rather than substitution for, existing weed management tactics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Byambajav Bolortuya ◽  
Shintaro Kawabata ◽  
Ayumi Yamagami ◽  
Bekh-Ochir Davaapurev ◽  
Fuminori Takahashi ◽  
...  

Plants in Mongolian grasslands are exposed to short, dry summers and long, cold winters. These plants should be prepared for fast germination and growth activity in response to the limited summer rainfall. The wild plant species adapted to the Mongolian grassland environment may allow us to explore useful genes, as a source of unique genetic codes for crop improvement. Here, we identified the Chloris virgata Dornogovi accession as the fastest germinating plant in major Mongolian grassland plants. It germinated just 5 h after treatment for germination initiation and showed rapid growth, especially in its early and young development stages. This indicates its high growth potential compared to grass crops such as rice and wheat. By assessing growth recovery after animal bite treatment (mimicked by cutting the leaves with scissors), we found that C. virgata could rapidly regenerate leaves after being damaged, suggesting high regeneration potential against grazing. To analyze the regulatory mechanism involved in the high growth potential of C. virgata, we performed RNA-seq-based transcriptome analysis and illustrated a comprehensive gene expression map of the species. Through de novo transcriptome assembly with the RNA-seq reads from whole organ samples of C. virgata at the germination stage (2 days after germination, DAG), early young development stage (8 DAG), young development stage (17 DAG), and adult development stage (28 DAG), we identified 21,589 unified transcripts (contigs) and found that 19,346 and 18,156 protein-coding transcripts were homologous to those in rice and Arabidopsis, respectively. The best-aligned sequences were annotated with gene ontology groups. When comparing the transcriptomes across developmental stages, we found an over-representation of genes involved in growth regulation in the early development stage in C. virgata. Plant development is tightly regulated by phytohormones such as brassinosteroids, gibberellic acid, abscisic acid, and strigolactones. Moreover, our transcriptome map demonstrated the expression profiles of orthologs involved in the biosynthesis of these phytohormones and their signaling networks. We discuss the possibility that C. virgata phytohormone signaling and biosynthesis genes regulate early germination and growth advantages. Comprehensive transcriptome information will provide a useful resource for gene discovery and facilitate a deeper understanding of the diversity of the regulatory systems that have evolved in C. virgata while adapting to severe environmental conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253346
Author(s):  
Het Samir Desai ◽  
Bhagirath Singh Chauhan

Thorough knowledge of the germination behavior of weed species could aid in the development of effective weed control practices, especially when glyphosate resistance is involved. A study was conducted using two glyphosate-resistant (GR) (SGW2 and CP2) and two glyphosate-susceptible (GS) (Ch and SGM2) populations of Chloris virgata, an emerging and troublesome weed species of Australian farming systems, to evaluate their germination response to different alternating temperature (15/5, 25/15 and 35/25°C with 12 h/12 h light/dark photoperiod) and moisture stress regimes (0, -0.1, -0.2, -0.4, -0.8 and -1.6 MPa). These temperature regimes represent temperatures occurring throughout the year in the eastern grain region of Australia. Seeds germinated in all the temperature regimes with no clear indication of optimum thermal conditions for the GR and GS populations. All populations exhibited considerable germination at the lowest alternating temperature regime 15/5°C (61%, 87%, 49%, and 47% for Ch, SGM2, SGW2, and CP2, respectively), demonstrating the ability of C. virgata to germinate in winter months despite being a summer annual. Seed germination of all populations was inhibited at -0.8 and -1.6 MPa osmotic potential at two alternating temperature regimes (15/5 and 35/25°C); however, some seeds germinated at 25/15°C at -0.8 MPa osmotic potential, indicating the ability of C. virgata to germinate in arid regions and drought conditions. Three biological parameters (T10: incubation period required to reach 10% germination; T50: incubation period required to reach 50% germination; and T90: incubation period required to reach 90% germination) suggested late water imbibition with increasing moisture stress levels. The GR population SGW2 exhibited a distinctive pattern in T10, T50, and T90, possessing delayed germination behaviour and thus demonstrating an escape mechanism against pre-plating weed management practices. Knowledge gained from this study will help in developing site-specific and multi-tactic weed control protocols.


2021 ◽  
pp. 113-129
Author(s):  
Het Samir Desai ◽  
Bhagirath Singh Chauhan
Keyword(s):  

2020 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract Chloris virgata is a widespread and very variable weedy annual grass (Flora of China Editorial Committee, 2015). This species is a particularly aggressive invader of bare areas and degraded or disturbed native vegetation, and it has the potential to out-compete native vegetation in these habitats (Smith, 2002; Oviedo Prieto et al., 2012; Weeds of Australia, 2015). This weedy grass spreads from cultivation, pastures, gardens, disturbed areas and roadsides to nearby disturbed forest, creeks and riversides, native grasslands and coastal habitats such as coastal forests and sand dunes (Weeds of Australia, 2015; FAO, 2015; PIER, 2015). It also grows as a weed in agricultural lands (Vibrans, 2009). Currently, this species is regarded as an invasive and environmental weed in northern Australia (i.e., Queensland and the Northern Territory; Weeds of Australia, 2015) and as an invasive grass in Cuba, Palau, New Caledonia, the Galapagos Islands, and Hawaii (Wagner et al., 1999; Charles Darwin Foundation, 2008; Oviedo Prieto et al., 2012; PIER, 2015).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sameera S. Shaikh ◽  
Mohammed H. Abu-Dieyeh ◽  
Fatima A. Al Naemi ◽  
Talaat Ahmed ◽  
Mohammad A. Al-Ghouti

Abstract This study attempted to use produced water (PW) to irrigate turfgrass species, Cynodon dactylon and Paspalum sp. Assessment on established grasses, heavy metal accumulation and germination tests for weeds and turf grass seeds were conducted to evaluate the impact of PW irrigation. C. dactylon depicted lower tolerance while Paspalum sp. showed better tolerance capacity towards PW. C. dactylon grown from seeds under greenhouse conditions were not able to tolerate more than 30% concentration of PW (4.5% salinity). In comparison to tap water irrigated turf grass, Paspalum sp. was found to accumulate higher concentrations of V and Pb in shoots and Cr, Ni and As in roots. The results of seed germination tests recommended that irrigation with PW is to be performed after turfgrass establishment. Germination tests also revealed that PW could encourage growth of the weed—Chloris virgata while it could discourage growth of Amaranthus viridis and Launaea mucronata. This study suggests that PW could be used for turfgrass as an alternative water resource but only after further research on the long-term scale.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1266
Author(s):  
Het Samir Desai ◽  
Michael Thompson ◽  
Bhagirath Singh Chauhan

Due to the overdependence on glyphosate to manage weeds in fallow conditions, glyphosate resistance has developed in various biotypes of several grass weeds, including Chloris virgata Sw. The first case of glyphosate resistance in C. virgata was found in 2015 in Australia, and since then several cases have been confirmed in several biotypes across Australia. Pot studies were conducted with 10 biotypes of C. virgata to determine glyphosate resistance levels. The biotypes were identified as either susceptible, moderately resistant or highly resistant based on the glyphosate dose required to kill 50% of plants. Two glyphosate-susceptible (GS) and two glyphosate-resistant (GR) biotypes were identified by the dose-response study and analyzed for the presence of target-site mutation in the 5–enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. Performance of alternative herbicides to glyphosate as well as the double-knock herbicide approach was evaluated on the two GS (Ch and SGM2) and two GR (SGW2 and CP2) biotypes. Three herbicides, clethodim, haloxyfop and paraquat, were found to be effective (100% control) against all four biotypes when applied at the 4–5 leaf stage. All the sequential herbicide treatments, such as glyphosate followed by paraquat and glufosinate-ammonium followed by paraquat, provided 100% control of all four biotypes of C. virgata. This study identified effective herbicide options for the control of GR C. virgata and showed that target-site mutations were involved in the resistance of two biotypes to glyphosate (SGW2 and CP2). Results could aid farmers in selecting herbicides to manage C. virgata in their fields.


Weed Research ◽  
2020 ◽  
Vol 60 (4) ◽  
pp. 287-296
Author(s):  
Sebastián Rodriguez ◽  
Betina Claudia Kruk ◽  
Emilio Horacio Satorre

Sign in / Sign up

Export Citation Format

Share Document