Seasonal variation in soil seed bank size and species composition of selected habitat types in Maputaland, South Africa

Bothalia ◽  
2007 ◽  
Vol 37 (2) ◽  
pp. 249-258 ◽  
Author(s):  
M. J. S. Kellerman ◽  
M. W. Van Rooyen

Seasonal variation in seed bank size and species composition of five selected habitat types within the Tembe Elephant Park. South Africa, was investigated. At three-month intervals, soil samples were randomly collected from five different habitat types: a, Licuati forest; b, Licuati thicket; c, a bare or sparsely vegetated zone surrounding the forest edge, referred to as the forest/grassland ecotone; d, grassland; and e, open woodland. Most species in the seed bank flora were either grasses, sedges, or forbs, with hardly any evidence of woody species. The Licuati forest and thicket soils produced the lowest seed densities in all seasons.  Licuati forest and grassland seed banks showed a two-fold seasonal variation in size, those of the Licuati thicket and woodland a three-fold variation in size, whereas the forest/grassland ecotone maintained a relatively large seed bank all year round. The woodland seed bank had the highest species richness, whereas the Licuati forest and thicket soils were poor in species. Generally, it was found that the greatest correspondence in species composition was between the Licuati forest and thicket, as well as the forest/grassland ecotone and grassland seed bank floras.

2011 ◽  
Vol 21 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Ana Salazar ◽  
Guillermo Goldstein ◽  
Augusto C. Franco ◽  
Fernando Miralles-Wilhelm

AbstractA large fraction of tree species forming persistent soil seed-banks and with dormant seeds are expected to be found in strongly seasonal ecosystems such as Neotropical savannas, where seedling recruitment could be highly variable. In the savannas of Central Brazil, we studied seed characteristics (type of dormancy, longevity and moisture content) of 14 representative woody species differing in seed dispersal season. We also studied the dynamics of soil seed-banks and similarity patterns in woody species composition among seed rain, soil seed-bank, seedling bank and standing vegetation along shallow topographic gradients that differ in canopy cover. Woody species composition of the soil seed-bank largely differed from the standing vegetation, the seed rain and the seedling bank species composition, suggesting low recruitment of woody species from the soil seed-bank. Seeds of the 14 woody species remained viable for less than 16 months in laboratory dry-storage conditions. Of those, most seeds dispersed in the dry season were dormant and exhibited low moisture content, while most seeds dispersed in the wet season were non-dormant and exhibited high moisture content. Longevity of these seeds dispersed in the dry and the wet seasons did not differ significantly. This study shows that both timing of seed dispersal and dormancy appear to control timing of seed germination and seedling recruitment of most Neotropical savanna woody species, which did not form persistent soil seed-banks. This study contributes to the understanding of tree/grass coexistence and tree density variations along topographic gradients in tropical savannas.


Author(s):  
Ya-Fei Shi ◽  
Zengru Wang ◽  
Bing-Xin Xu ◽  
Jian-Qiang Huo ◽  
Rui Hu ◽  
...  

Soil seed banks may offer great potential for restoring and maintaining desert ecosystems that have been degraded by climate change and anthropogenic disturbance. However, few studies have explored the annual dynamics in the composition and relative abundance of these soil seed banks. We conducted a long-term observational study to assess the effects of environmental factors (meteorology and microtopography) and aboveground vegetation on the soil seed bank of the Tengger Desert, China. The desert seed bank was dominated by annual herbs. We found that more rainfall in the growing season increased the number of seeds in the soil seed bank, and that quadrats at relatively higher elevations had fewer seeds. The species composition had more similarity in the seed bank than in the aboveground vegetation, though the seed bank and aboveground vegetation did change synchronously due to the rapid propagation of annuals. Together, our findings suggest that the combined effects of environmental factors and plant life forms determine the species composition and size of soil seed banks in deserts. Thus, if degraded desert ecosystems are left to regenerate naturally, the lack of shrub and perennial herb seeds could crucially limit their restoration. Human intervention and management may have to be applied to enhance the seed abundance of longer-lived lifeforms in degraded deserts.


Author(s):  
Josephine Esaete ◽  
Augustine Bongo ◽  
Thomas Lado ◽  
Tomor Bojoi ◽  
Henry Busulwa

Soil seed banks are important for regeneration of degraded wetlands ecosystems. The Sudd wetlands of Juba city have long been encroached for crop cultivation. Seedling germination was monitored in a greenhouse to establish possible natural regeneration in Mindiari, Rejaf and Roton wetlands in the Sudd. Sixty-four species germinated from the soil seed bank of which 12.5% were dominated by Cyperus difformis and Typha capensis. The findings showed that median wetland species richness in Mindiari was 1.5 (interquartile range = 0.75?3.5), Rejaf 2.5 (interquartile range = 1.0 ? 4.0), Roton 3 (interquartile range = 1.0 ? 5.0) while median Shannon-Wiener diversity was 1.5 (1.14 ?1.73), 1.43 (1.01?1.66), 1.15 (0.98?1.67) for Mindiari, Rejaf and Roton respectively. Both the median seed species richness and diversity were not significantly different among the study wetlands. The median of seed density (56.1) was significantly higher in Roton than in Mindiari (36.7) and Rejaf (29.4) wetlands. The NMDS results showed that species composition of Mindiari and Rejaf was different from Roton. It is concluded that growing crops in wetlands did not influence species richness and diversity but it reduced seed density and altered species composition. Although wetland species were not significantly different in the three-wetland categories, dominance of canopy species belonging to Typhaceae and Cyperaceae indicates that these species are resilient to cultivation and could facilitate natural regeneration of cultivated wetlands edges of the Sudd region in Juba. Further research should examine effect of cultivation duration and flooding regimes on soil seed bank species richness, diversity, and density and composition.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Ya-Fei Shi ◽  
Zeng-Ru Wang ◽  
Bing-Xin Xu ◽  
Jian-Qiang Huo ◽  
Rui Hu ◽  
...  

Abstract Background Soil seed banks may offer great potential for maintaining and restoring desert ecosystems that have been degraded by climate change and anthropogenic disturbance. However, few studies have explored the year-to-year dynamics in the species composition (richness and abundance) of these desert soil seed banks. Thus, we conducted a 4-year study to assess the effects of environmental factors (meteorology and microtopography) and aboveground vegetation on the soil seed bank of the Tengger Desert, China. Results We found the seed bank was dominated by annual herb species both in species richness and abundance. More rainfall in the growing season increased the number of seeds in the soil seed bank, and quadrat micro-elevation had a negative effect on soil seed bank size. The species composition in the seed bank had significantly larger between-year similarity than that in the aboveground vegetation due to the dominance of annual herb species. For different life forms, the species composition of annual herbs showed distinctly larger temporal similarity between the aboveground vegetation and the seed bank compared with perennial herbs and shrubs. Conclusions Our findings highlight that the combined effects of environmental factors and plant life forms determine the species composition (especially the abundance) of soil seed banks in deserts. However, if degraded desert ecosystems are left to regenerate naturally, the lack of shrub and perennial herb seeds could crucially limit their restoration. Human intervention and management may have to be applied to enhance the seed abundance of perennial lifeforms in degraded deserts.


1999 ◽  
Vol 47 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Pablo Ferrandis ◽  
José M. Herranz ◽  
Juan J. Martínez-Sśnchez

The direct impact of fire on the soil seed bank and the changes observed one year later were studied by analysis of seed content in sample layers at depths of 0–2 cm and 2–5 cm. Fire had a severe but selective impact on the soil seed bank: species with transient seed reserves accumulating on the soil surface were eliminated, whereas species with persistent buried seed reserves tended to remain in the soil after the passage of fire. Thick seed coats were shown to be an efficient mechanical protection barrier to fire. One year after fire, trade-off between input and output into seed bank produced a conspicuous recovery of seed density and species richness on the soil surface, and a pronounced impoverishment in the 2–5-cm-depth soil layer. In general, seed banks of woody species were severely depleted due to the lack of replacement following fire, with the exception of Erica, which maintained a high seed bank density in the upper soil layer. The post-fire recovery of soil seed populations was mainly due to two clearly differentiated groups of annuals. The first group was of species whose seeds survived fire, germinated, and completed their phenological cycle. They were mainly fire-ephemerals. The second group consisted of wind-dispersed species whose soil seed banks had suffered a very severe (even total) depletion by fire. They were mainly Gramineae and Compositae species which behaved as opportunistic fire-sensitive invaders.


2011 ◽  
Vol 79 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Maciej Wódkiewicz ◽  
Anna Justyna Kwiatkowska-Falińska

Forest seed banks mostly studied in managed forests proved to be small, species poor and not reflecting aboveground species composition. Yet studies conducted in undisturbed communities indicate a different seed bank characteristic. Therefore we aimed at describing soil seed bank in an undisturbed forest in a remnant of European lowland temperate forests, the Białowieża Forest. We compared similarity between the herb layer and seed bank, similarity of seed bank between different patches, and dominance structure of species in the herb layer and in the seed bank of two related oak-hornbeam communities. We report relatively high values of Sorensen species similarity index between herb layer and seed bank of both patches. This suggests higher species similarity of the herb layer and soil seed bank in natural, unmanaged forests represented by both plots than in fragmented communities influenced by man. Although there was a set of core seed bank species present at both plots, yielding high Sorensen species similarity index values, considerable differences between plots in seed bank size and dominance structure of species were found, indicating spatial variability of studied seed bank generated by edaphic conditions. Dominance structure of species in the herb layer was not reflected in the underlying seed bank. This stresses, that natural forest regeneration cannot rely only on the seed bank, although some forest species are capable of forming soil seed banks. While forest seed banks may not reflect vegetation composition of past successional stages, they may inform on history and land use of a specific plot.


1993 ◽  
Vol 17 (3) ◽  
pp. 329-347 ◽  
Author(s):  
Susan J. Warr ◽  
Ken Thompson ◽  
Martin Kent

The article highlights a comparatively neglected area of biogeographical research - seed banks and the distribution of seeds in the soil. The article reviews some of the relevant literature on seed banks and the methods for their study. Attention is focused on aspects of seed banks of particular relevance to biogeographers, with detailed examples drawn from seed bank studies in both temperate and tropical environments. In the review of the seed bank literature, the topics covered include the seed banks of successional communities and the size of seed banks in different vegetation types. The species composition of seed banks in different plant communities is discussed, particularly the degree of correlation between the species composition of seed banks and associated ground flora. The relationships between seed persistence, depth of burial in the soil and soil properties, such as moisture and pH, are explored. Seed bank heterogeneity is examined and a number of studies which have attempted to describe and measure the spatial variability of seed banks are summarized. Ways of classifying seed banks in terms of seed bank strategies are explained. The role of seed banks in conservation is discussed, for example in restoration projects, where preferred species have been lost from the vegetation but survive in the seed bank. The relevance of seed banks for the conservation of rare species and in landscape management is considered. Lastly, the contribution of seed banks to the recovery of vegetation following disturbance in various plant communities is discussed. In the review of seed bank sampling techniques, the subjects considered include methods of sample collection, the sampling intensity required for reliable estimates of seed density, a consideration of the relative merits of random and systematic sample distribution, as well as the importance of the timing of sampling. Various methods for the estimation of seed numbers in samples are appraised; these either involve extraction of seeds from the soil, followed by seed identification or enumeration by germination and seedling identification. Problems of analysing seed bank data are considered and several useful techniques for data analysis are suggested. Finally, the article draws attention to areas of future seed bank research for biogeographers and plant ecologists.


2020 ◽  
Vol 13 (3) ◽  
pp. 256-265 ◽  
Author(s):  
José Djalma de Souza ◽  
Bruno Ayron de Souza Aguiar ◽  
Danielle Melo dos Santos ◽  
Vanessa Kelly Rodrigues de Araujo ◽  
Júlia Arruda Simões ◽  
...  

Abstract Aims In dry tropical forests, herbaceous species may have dormancy mechanisms and form persistent and transient seed banks in the soil. Evolutionarily acquired, these mechanisms are efficient for the establishment and survival of these herbs, especially in forests with unpredictable climates, such as the Caatinga. Thus, our objective was to verify whether the studied herbaceous species adopt the physical dormancy mechanism and how these natural barriers are overcome, to understand the temporal dynamics existing in the soil seed bank from a Brazilian dry tropical forest. Methods Seeds of five native herbaceous species from the Caatinga forests were selected and submitted to pre-germinative treatments for verifying the presence of physical dormancy. We collected soil samples in the rainy and dry seasons for four consecutive years and monitored the emergence of the selected herbaceous in the greenhouse. We verified the differences in germination and seed bank emergence in the soil by generalized linear models. Important Findings The presence and absence of physical dormancy were observed in seeds from Caatinga herbaceous species. We found intraspecific and interspecific differences in the herbaceous emergence from soil seed banks between years and climatic seasons. In perennial herbs, consecutive lack of emergence between seasons and years was frequent, which suggests a direct relationship with the mechanism of physical dormancy and the environmental conditions necessary to overcome integument barriers. In these species, seed dimorphism and dormancy may confer additional advantages to their survival. Moreover, presenting intermediate levels of physical dormancy in an annual species may be an evolutionary adjustment to rainfall unpredictability. In contrast, we found that the annual herb without dormancy is more sensitive to seasonal and interannual climate changes, as evidenced by the increase and significant reduction of its emergence in the soil seed bank. These differences acquired evolutionarily are advantageous for the establishment of herbaceous populations, mainly in semiarid regions with an unpredictable climate.


2019 ◽  
Vol 31 (6) ◽  
pp. 2413-2422 ◽  
Author(s):  
Ezequiel Gasparin ◽  
José M. R. Faria ◽  
Anderson C. José ◽  
Olivia A. O. Tonetti ◽  
Rodrigo A. de Melo ◽  
...  

Abstract Araucaria angustifolia (Bertol.) Kuntze is a representative species of the Mixed Ombrophilous Forest in the Atlantic Forest Biome of Brazil. The development of a germplasm conservation protocol for long-term seed bank storage is compromised for this species, as it is sensitive to desiccation. Furthermore, in situ establishment of a soil seed bank in its natural habitat may be limited. This study evaluates the storability of two provenances of A. angustifolia seeds and their behavior in an artificial soil seed bank in two forest environments (understory and edge). Results show that both seed provenances may be stored at 5 °C for approximately 12 months, retaining high viability. The subsequent decrease in germination was associated with a reduction and an increase in seed water content, as well as with increased electrical conductivity. In the understory environment, seed viability was above 85% for the first 60 days, and at the end of the experiment (270 days), seedlings emerged. However, at the forest edge, there was a total loss of seed viability after 120 days associated with a reduction in water content and high predation. It is concluded, therefore, that short-term storage of A. angustifolia seeds is possible in a cold room, which is fundamental to supply seed demand outside the production period. Forest cover conservation is important for regeneration and conservation of the species.


2020 ◽  
Vol 42 (2) ◽  
pp. 85
Author(s):  
Annemieke Ruttledge ◽  
Ralph D. B. Whalley ◽  
Gregory Falzon ◽  
David Backhouse ◽  
Brian M. Sindel

A large and persistent soil seed bank characterises many important grass weeds, including Nassella trichotoma (Nees) Hack. ex Arechav. (serrated tussock), a major weed in Australia and other countries. In the present study we examined the effects of constant and alternating temperatures in regulating primary and secondary dormancy and the creation and maintenance of its soil seed bank in northern NSW, Australia. One-month-old seeds were stored at 4, 25°C, 40/10°C and 40°C, in a laboratory, and germination tests were conducted every two weeks. Few seeds germinated following storage at 4°C, compared with seeds stored at 25°C, 40/10°C and 40°C. Nylon bags containing freshly harvested seeds were buried among N. trichotoma stands in early summer, and germination tests conducted following exhumation after each season over the next 12 months. Seeds buried over summer and summer plus autumn had higher germination than seeds buried over summer plus autumn plus winter, but germination increased again in the subsequent spring. Seeds stored for zero, three, six and 12 months at laboratory temperatures were placed on a thermogradient plate with 81 temperature combinations, followed by incubation at constant 25°C of un-germinated seeds. Constant high or low temperatures prolonged primary dormancy or induced secondary dormancy whereas alternating temperatures tended to break dormancy. Few temperature combinations resulted in more than 80% germination.


Sign in / Sign up

Export Citation Format

Share Document