herb layer
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 53)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Janet A. Morrison ◽  
Bernadettte Roche ◽  
Maren Veatch-Blohm

Plants in suburban forests of eastern North America face the dual stressors of high white-tailed deer density and invasion by nonindigenous plants. The combination of chronic deer herbivory and strong competition from invasive plants could alter a plant’s stress- and defense-related secondary chemistry, especially for long-lived juvenile trees in the understory, but this has not been studied. We measured foliar total antioxidants, phenolics, and flavonoids in juveniles of two native trees, Fraxinus pennsylvanica (green ash) and Fagus grandifolia (American beech), growing in six forests in the suburban landscape of central New Jersey, USA. The trees grew in experimental plots that had been subject for 2.5 years to factorial treatments of deer access/exclosure X addition/no addition of the nonindigenous invasive grass Microstegium vimineum (Japanese stiltgrass). As other hypothesized drivers of plant secondary chemistry, we also measured non-stiltgrass herb layer cover, light levels, and water availability. Univariate mixed model analysis of the deer and stiltgrass effects and multivariate structural equation modeling (SEM) of all variables showed that both greater stiltgrass cover and greater deer pressure induced antioxidants, phenolics, and flavonoids, with some variation between species. Deer were generally the stronger factor, and stiltgrass effects were most apparent at high stiltgrass density. SEM also revealed that soil dryness directly increased the chemicals; deer had additional positive, but indirect, effects via influence on the soil; in beech PAR positively affected flavonoids; and herb layer cover had no effect. Juvenile trees’ chemical defense/stress responses to deer and invasive plants can be protective, but also could have a physiological cost, with negative consequences for recruitment to the canopy. Ecological implications for species and their communities will depend on costs and benefits of stress/defense chemistry in the specific environmental context, particularly with respect to invasive plant competitiveness, extent of invasion, local deer density, and deer browse preferences.


Plant Ecology ◽  
2021 ◽  
Author(s):  
Janez Kermavnar ◽  
Lado Kutnar ◽  
Aleksander Marinšek

AbstractSpecies- and trait-environment linkages in forest plant communities continue to be a frequent topic in ecological research. We studied the dependence of floristic and functional trait composition on environmental factors, namely local soil properties, overstory characteristics, climatic parameters and other abiotic and biotic variables. The study area comprised 50 monitoring plots across Slovenia, belonging to the EU ICP Forests monitoring network. Vegetation was surveyed in accordance with harmonized protocols, and environmental variables were either measured or estimated during vegetation sampling. Significant predictors of species composition were identified by canonical correspondence analysis. Correlations between plant traits, i.e. plant growth habit, life form, flowering features and CSR signature, were examined with fourth-corner analysis and linear regressions. Our results show that variation in floristic composition was mainly explained by climatic parameters (mean annual temperature, mean annual precipitation), soil properties (pH) and tree layer-dependent light conditions. Trait composition was most closely related with tree layer characteristics, such as shade-casting ability (SCA, a proxy for light availability in the understory layer), tree species richness and tree species composition. Amongst soil properties, total nitrogen content and soil texture (proportion of clay) were most frequently correlated with different species traits or trait states. The CSR signature of herb communities was associated with tree layer SCA, soil pH and mean annual temperature. The floristic composition of the studied herb-layer vegetation depended on temperature and precipitation, which are likely to be influenced by ongoing climate change (warming and drying). Trait composition exhibited significant links to tree layer characteristics and soil conditions, which are in turn directly modified by forest management interventions.


2021 ◽  
Vol 131 ◽  
pp. 108229
Author(s):  
Anna Mastrogianni ◽  
Milan Chytrý ◽  
Athanasios S. Kallimanis ◽  
Ioannis Tsiripidis

2021 ◽  
Author(s):  
Matthew A. Albrecht ◽  
Noah D. Dell ◽  
Megan J. Engelhardt ◽  
J. Leighton Reid ◽  
Michael L. Saxton ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12222
Author(s):  
Qian Lyu ◽  
Jiangli Liu ◽  
Junjie Liu ◽  
Yan Luo ◽  
Luman Chen ◽  
...  

As one means of close-to-nature management, forest gaps have an important impact on the ecological service function of plantations. To improve the current situation of P. massoniana plantations, three different sizes of forest gaps (large gaps, medium gaps and small gaps) were established to observe whether gap setting can improve the soil fertility and plant diversity of forest plantations. The results showed that compared with the control, the soil organic matter content of different soil layers increased significantly in the medium forest gap and large forest gap. The content of soil organic matter in the surface layer of the middle gap had the largest increase (80.64%). Compared with the control, the content of soil-available potassium between different soil layers decreased significantly by 15.93% to 25.80%. The soil hydrolysable nitrogen reached its maximum under the medium gap. Soil moisture showed significant changes among different gap treatments, different soil layers and their interaction, decreasing significantly in large gaps and small gaps but increasing significantly in medium gaps. The soil bulk density decreased significantly compared with the control, and the surface soil reached the minimum in the medium gap. There were different plant species in forest gaps of different sizes, and shrub layer plants were more sensitive to gap size differences than herb layer plants. The plant diversity indices of the shrub layer increased significantly and showed a maximum under the medium gap. The plant diversity of the herb layer showed the opposite trend, and the Shannon-Wiener index, Simpson index and Pielou index were significantly lower than those of the control. RDA showed that different gap treatments had significant effects on the distribution of plants under the forest. Soil available potassium, soil moisture and soil bulk density affected the distribution and diversity of plants under the forest, serving as the limiting factors of plant growth. In forest management, if we strictly consider the improvement of plant diversity and soil physicochemical properties, these results suggest that a medium gap should be established in a plantation for natural restoration.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1173
Author(s):  
Andrzej Bobiec ◽  
Agata Ćwik ◽  
Agata Gajdek ◽  
Tomasz Wójcik ◽  
Maria Ziaja

An eight-hectare forest reserve in the centre of the metropolitan area in SE Poland was investigated for the effects of its management in relation to its purpose—protection of old Quercus robur L. trees. This local issue corresponds to a wider debate on the role of urban forests in contemporary societies. The study embraced (1) oak stand history—stand mapping and dendrochronology, historical maps’ analysis; (2) vegetation trends—undergrowth and ground layer analysis; and (3) visitors’ opinions on the reserve’s use—interview. The dendroecological analysis corroborates the landscape’s history emerging from the 1700s–1900s maps. The reserve is a feral park established in the early 1900s on the abandoned agricultural, partly wooded landscape. Under the current regime, shade-tolerant trees continue gaining advantage over older oaks, preventing their regeneration, whilst the herb layer, due to the reserve’s isolation remains poor and polluted by alien species. The non-intervention approach does not allow the reserve’s objective to be met. We recommend the restoration of features of semi-open silvopastoral landscape. This would correspond with both local eco-history and the dominating preference of the interviewed visitors. Such “bio-cultural refugia” should become key knowledge centres of the natural, cultural, and economic importance of the “working rural landscape”, fostering urban care for the countryside.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gerong Wang ◽  
Yue Sun ◽  
Mo Zhou ◽  
Naiqian Guan ◽  
Yuwen Wang ◽  
...  

Abstract Background Herbs are an important part of the forest ecosystem, and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances. Based on the near-mature secondary coniferous and broad-leaved mixed forest in Jilin Province Forestry Experimental Zone, this study analyzed seasonal changes of species diversity and biomass of the understory herb layer after different intensities of thinning. Results The results showed that although the composition of herbaceous species and the ranking of importance values were affected by thinning intensity, they were mainly determined by seasonal changes. Across the entire growing season, the species with the highest importance values in thinning treatments included Carex pilosa, Aegopodium alpestre, Meehania urticifolia, and Filipendula palmata, which dominated the herb layer of the coniferous and broad-leaved mixed forest. The number of species, Margalef index, Shannon-Wiener index and Simpson index all had their highest values in May, and gradually decreased with months. Pielou index was roughly inverted “N” throughout the growing season. Thinning did not increase the species diversity. Thinning can promote the total biomass, above- and below-ground biomass. The number of plants per unit area and coverage were related to the total biomass, above- and below-ground biomass. The average height had a significantly positive correlation with herb biomass in May but not in July. However, it exerted a significantly negative correlation with herb biomass in September. The biomass in the same month increased with increasing thinning intensity. Total herb biomass, above- and below-ground biomass showed positive correlations with Shannon-Winner index, Simpson index and Pielou evenness index in May. Conclusions Thinning mainly changed the light environment in the forest, which would improve the plant diversity and biomass of herb layer in a short time. And different thinning intensity had different effects on the diversity of understory herb layer. The findings provide theoretical basis and reference for reasonable thinning and tending in coniferous and broad-leaved mixed forests.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11852
Author(s):  
Qian Lyu ◽  
Yi Shen ◽  
Xianwei Li ◽  
Gang Chen ◽  
Dehui Li ◽  
...  

Background Soil and understory vegetation are vital components of forest ecosystems. Identifying the interaction of plantation management to vegetation and soil is crucial for developing sustainable plantation ecosystem management strategies. As one of the main measures of close-to-nature management of forest plantation, few studies have paid attention to the effect of crop tree management on the soil properties and understory vegetation. Methods A 36-year-old Pinus massoniana plantation in Huaying city, Sichuan Province was taken as the research object to analyse the changes in undergrowth plant diversity and soil physicochemical properties under three different crop tree densities (100, 150, and 200 N/ha). Results Our results showed that the contents of available phosphorus, organic matter and hydrolysable nitrogen in the topsoil increased significantly after crop tree management, while content of available potassium decreased. The composition of shrub and herb layer was richer, and the dominant species were obviously replaced after crop tree management. The Shannon–Wiener index and Richness index of shrub layer, and the diversity of herb layer increased significantly after crop tree management. Herb layer diversity indexes and Richness index of shrub layer were closely related to soil organic matter, available phosphorus, hydrolysable nitrogen, available potassium, soil moisture and bulk density. As the main limiting factors for plant growth, nitrogen, phosphorus and potassium were closely related to plant diversity and to the distribution of the dominant species. At the initial stage of crop tree management, each treatment significantly improved the soil physicochemical properties and plant diversity of Pinus massoniana plantation, and the comprehensive evaluation was 200 N/ha >100 N/ha >150 N/ha >CK. Compared with other treatments, 200 N/ha had the best effect on improving the undergrowth environment of the Pinus massoniana plantation in the initial stage of crop tree management.


Ecosystems ◽  
2021 ◽  
Author(s):  
Mateusz Rawlik ◽  
Andrzej M. Jagodziński

AbstractProper estimation of the herb layer annual net primary production (ANPP) can help to appreciate the role of this layer in carbon assimilation and nutrient cycling. Simple methods of ANPP estimation often understate its value. More accurate methods take into account biomass increments of individual species but are more laborious. We conducted our study in an oak-hornbeam forest (site area 12 ha) dominated by beech in NW Poland during two growing seasons (2010 and 2011). We collected herb layer biomass from 7 to 10 square frames (0.6 × 0.6 m). We collected plant biomass every week in April and May and every two weeks for the rest of the growing season. We compared six methods of calculating ANPP. The highest current-year standing biomass (1st method of ANPP calculation) was obtained on May 15, 2010—37.8 g m−2 and May 7, 2011—41.0 g m−2. The highest values of ANPP were obtained by the 6th method based on the sum of the highest products of shoot biomass and density for individual species: 74.3 g m−2 year−1 in 2010 and 94.0 g m−2 year−1 in 2011. The spring ephemeral Anemone nemorosa had the highest share of ANPP with 50% of the total ANPP. Two summer-greens, Galeobdolon luteum and Galium odoratum, each had a ca. 10% share of ANPP. The best results of ANPP calculation resulted from laborious tracking of dynamics of biomass and density of individual shoots.


Sign in / Sign up

Export Citation Format

Share Document