scholarly journals The biological control of aquatic weeds in South Africa: Current status and future challenges

Bothalia ◽  
2017 ◽  
Vol 47 (2) ◽  
Author(s):  
Martin P. Hill ◽  
Julie Coetzee

Background: Aquatic ecosystems in South Africa are prone to invasion by several invasive alien aquatic weeds, most notably, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae) (water hyacinth); Pistia stratiotes L. (Araceae) (water lettuce); Salvinia molesta D.S. Mitch. (Salviniaceae) (salvinia); Myriophyllum aquaticum (Vell. Conc.) Verd. (parrot’s feather); and Azolla filiculoides Lam. (Azollaceae) (red water fern). Objective: We review the biological control programme on waterweeds in South Africa. Results: Our review shows significant reductions in the extent of invasions, and a return on biodiversity and socio-economic benefits through the use of this method. These studies provide justification for the control of widespread and emerging freshwater invasive alien aquatic weeds in South Africa. Conclusions: The long-term management of alien aquatic vegetation relies on the correct implementation of biological control for those species already in the country and the prevention of other species entering South Africa.

2016 ◽  
Vol 9 (1) ◽  
pp. 1-40 ◽  
Author(s):  
C. N. Kurugundla ◽  
B. Mathangwane ◽  
S. Sakuringwa ◽  
G. Katorah

Aquatic ecosystems in Botswana have been under threat by the aquatic alien invasive plant species viz., salvinia Salvinia molesta Mitchell, water lettuce Pistia stratiotes L., and water hyacinth Eichhornia crassipes (Mart.) Solms-Laub. While salvinia has been termed the major threat to the Botswana wetlands, water lettuce and water hyacinth are considered to be of minor importance. This review presents the species biology, distribution, historical spread, negative impacts, control achieved right from their discovery in the country by referring to their control and management in the world. Having infested the Kwando-Linyanti-Chobe Rivers in the 1970s, salvinia was initially tried by the use of herbicides, paraquat and glyphosate, between 1972 and 1976. With the discovery of the host specific biological control weevil Cyrtobagous salviniae Calder and Sands in 1981, the weevil was introduced by Namibians on Kwando and Chobe Rivers in 1983 and by Botswana in 1986 in the Okavango Delta. While the control was slowly establishing in Kwando-Linyanti-Chobe Rivers, it became apparent that lakes and perennial swamps within and outside Moremi Game Reserve of the Okavango Delta were infested with salvinia from 1992 onwards. With continuous and sustained liberation of the weevil in the Kwando-Linyanti-Chobe Rivers and in the Okavango Delta between 1999 and 2000, salvinia control was achieved by 2003, and since then the weevil constantly keeps the weed at low levels. The success is mainly due to sustainable monitoring through the application of physical and biological control methods. However, salvinia is still threatening the Okavango Delta due to factors such as tourism activities, boat navigation fishing and transporttion by wild animals. The first occurrence of water lettuce was recorded on Kwando and Chobe Rivers in 1986. Its biocontrol weevil Neohydronomous affinis Hustache was released in the year 1987. The weevil became extinct in Selinda Canal and Zibadianja Lake on Kwando River due to dry and wet events for over 10 years and the weed had been under control biologically on Chobe River. Having surface covered the Selinda and a part of the Zibadianja in high flood and rainfall in 1999/2000 season, research was undertaken to contain water lettuce, which led to its eradication by 2005. Regular physical removal of the water lettuce prior to fruit maturity is an effective method of control or eradicating the weed in seasonal water bodies. The Limpopo Basin (shared by Botswana, South Africa, Zimbabwe and Mozambique) has become vulnerable to water hyacinth infestation. Water hyacinth infested the trans-boundary Limpopo River in 2010 sourced from Hartbeesport Dam on Crocodile River in South Africa. Botswana and South Africa have been consulting each other to implement integrated control of the weed jointly in the Limpopo River. Water hyacinth could be a continuous threat to the dams and the rivers in the Limpopo basin if its control is not taken seriously. These three species are found growing in Botswana in a range of pH between 4.5 and 10.3 and in the range of conductivities between 20 and 580 µS cm-1. Range of soluble nitrates, phosphates and potassium in the habitats of salvinia infestations were 0.02 to 1.5, 0.01 to 1.78 and 0.3 to 6.92 mg L-1 respectively. Water lettuce infestation in the seasonal Selinda Canal had a maximum of 4.7 mg L-1 nitrates, 2.8 mg L-1 phosphates and 7.9 mg L-1 potassium. Nevertheless, these three nutrients were in the range of 0.41 to 9.56 mg L-1, 0.2 to 2.9 mg L-1, and 7.7 to 11.53 mg L-1 respectively in the Limpopo River where water hyacinth infestations were observed. These nutrients were considerably high during decomposition phase of biological control of weeds. The Government of Botswana “regulates the movement and importation of boats and aquatic apparatus, to prevent the importation and spread of aquatic weeds both within and from the neighboring countries” by “Aquatic Weed (Control) Act” implemented in 1986. These measures, combined with communities, conservation groups, NGOs and public awareness campaigns, have highlighted the gravity of aquatic weeds spreading into wetlands, dams and other water bodies. In conclusion, the Government of Botswana is committed and supportive through the Department of Water Affairs in protecting the wetlands of the country efficiently and prudently.


Koedoe ◽  
1987 ◽  
Vol 30 (1) ◽  
Author(s):  
Catharina J. Cilliers

Although Pistia stratiotes L. (water lettuce) is not an important weed in the Republic of South Africa, the host-specific weevil Neohydronomus pulchellus Hustache was imported for the biological control of this weed. The weevil was released onto a dense infestation of P. stratiotes of several years standing on a pan in the Pafuri area in December 1985. By September 1986 the weevils had already destroyed most of the weed and in October 1986 the weed was under biological control at this site.


2017 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
Helda Orbani Rosa ◽  
Samharinto . ◽  
Lyswiana Aphrodyanti

<p>Water lettuce (<em>Pistia stratiotes</em>) is one of the important aquatic weeds because it can cause many problems for humans and the environment. In addition, the declining quality and quantity of water is also due to the invasion of water lettuce weeds covering the surface of waters, which can lead to the increasing transpiration and destruction of plankton making the balance of the ecosystem disrupted. This study was conducted in an attempt to control <em>P.</em><em> Stratiotes</em> by utilizing the biological control agent <em>Spodoptera pectinicornis</em> with mass production and its releasing applications in South Kalimantan’s waters. The study was started by taking and collecting <em>S. pectinicornis</em> from several places/fields. The moths were then placed in trays of water and put in a gauze cage of 75 cm x 75 cm x 75 cm in order to keep the air circulation. They were nourished in the laboratory to produce groups of eggs. The groups of eggs were then transferred to rearing ponds. When a fair number of agents were obtained, the treatment of liquid fertilizer AB Mix was carried out. The results showed that the fertilization treatment to water lettuce weeds as the food for the biological control agent <em>S. pectinicornis</em> did not differ from the condition when there was no fertilization treatment either on the feeding ability, weight of larvae and pupae or fitness of imago. However, its destructive ability is high that it has a big potential as a biological control of water lettuce.</p>


Sign in / Sign up

Export Citation Format

Share Document