azolla filiculoides
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 56)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Federico Brilli ◽  
K. G. Srikanta Dani ◽  
Stefania Pasqualini ◽  
Alma Costarelli ◽  
Sara Cannavò ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3281
Author(s):  
Davoud Balarak ◽  
Amir Hossein Mahvi ◽  
Saeideh Shahbaksh ◽  
Md A. Wahab ◽  
Ahmed Abdala

Due to the shortage of freshwater availability, reclaimed water has become an important source of irrigation water. Nevertheless, emergent contaminants such as antibiotics in reclaimed water can cause potential health risks because antibiotics are nonbiodegradable. In this paper, we report the adsorptive removal of azithromycin (AZM) antibiotics using activated porous carbon prepared from Azolla filiculoides (AF) (AFAC). The influence of the adsorption process variables, such as temperature, pH, time, and adsorbent dosage, is investigated and described. The prepared AFAC is very effective in removing AZM with 87% and 98% removal after the treatment of 75 min, at 303 and 333 K, respectively. The Langmuir, Temkin, Freundlich, and Dubinin–Radushkevich isotherm models were used to analyze the adsorption results. The Freundlich isotherm was best to describe the adsorption isotherm. The adsorption process follows second-order pseudo kinetics. The adsorption was endothermic (ΔH°= 32.25 kJ/mol) and spontaneous (ΔS° = 0.128 kJ/mol·K). Increasing the temperature from 273 to 333 K makes the process more spontaneous (ΔG° = −2.38 and −8.72 KJ/mol). The lower mean square energy of 0.07 to 0.845 kJ/mol confirms the process’ physical nature. The results indicate that AFAC can be a potential low-cost adsorbent of AZM from aqueous solutions.


2021 ◽  
pp. 108278
Author(s):  
Sara Pourkarimi ◽  
Maryam Saberdel Sadeh ◽  
Ahmad Hallajisani ◽  
Mohsen Hajikhani ◽  
Maryam Moradi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Alma Costarelli ◽  
Sara Cannavò ◽  
Martina Cerri ◽  
Roberto Maria Pellegrino ◽  
Lara Reale ◽  
...  

Azolla is a genus of floating freshwater ferns. By their high growth and N2 fixation rates, Azolla species have been exploited for centuries by populations of South-east Asia as biofertilizers in rice paddies. The use of Azolla species as a sustainable plant material for diverse applications, such as feeding, biofuel production, and bioremediation, has encountered a growing interest over the last few years. However, high levels of feed deterrent flavonoids in their fronds have discouraged the use of these ferns as a sustainable protein source for animal consumption. Additionally, information on how and to what extent environmental determinants affect the accumulation of secondary metabolites in these organisms remains poorly understood. Moving from these considerations, here, we investigated by an untargeted metabolomics approach the profiles of phenylpropanoid compounds in the fronds of Azolla filiculoides sampled under control and pigment-inducing stress conditions. In parallel, we assayed the expression of essential structural genes of the phenylpropanoid pathway by quantitative RT-PCR. This study provides novel information concerning A. filiculoides phenylpropanoid compounds and their temporal profiling in response to environmental stimuli. In particular, we show that besides the already known 3-deoxyanthocyanidins, anthocyanidins, and proanthocyanidins, this fern can accumulate additional secondary metabolites of outstanding importance, such as chemoattractants, defense compounds, and reactive oxygen species (ROS) scavengers, and crucial as dietary components for humans, such as dihydrochalcones, stilbenes, isoflavones, and phlobaphenes. The findings of this study open an opportunity for future research studies to unveil the interplay between genetic and environmental determinants underlying the elicitation of the secondary metabolites in ferns and exploit these organisms as sustainable sources of beneficial metabolites for human health.


2021 ◽  
Author(s):  
◽  
Adolphe Lehavana

In Madagascar, as in several countries in the world, the invasion by four aquatic weeds (Pontederia crassipes Mart. (Pontederiaceae), Pistia stratiotes L. (Araceae), Salvinia molesta D.S. Mitch Salviniaceae) and Azolla filiculoides Lam. (Azollaceae) are among the drivers of environmental and socio-economic deterioration in aquatic ecosystems. Pistia stratiotes was first recorded on the island in the 19th century, and P. crassipes from the beginning of the 20th century, while S. molesta and A. filiculoides were only documented during in the 21st century. From the 1920s, botanists such as Henri Perrier de la Bathie and Raymond Decary were already aware of the dangers caused, in particular by P. crassipes in other countries, and raised the alarm, but little attention has been paid to these species. The aim of the research conducted for this thesis was to determine the distribution, socio-economic and ecological impacts of these four invasive alien aquatic weeds in Madagascar and to make recommendations for their control. First, the distributions of these four aquatic weeds were mapped. This mapping exercise compiled data from different sources including herbarium records, online data and field visits across Madagascar. The mapping study was undertaken from August 2015 to June 2020. Except for mountainous areas above 1800 m (Tsaratanana Massif, Ankaratra Massif and Andringitra Massif) where no data were available, all of Madagascar's bioclimates were invaded by at least one of the four aquatic weeds. In total, at least one species was recorded in 18 of the 22 Regions. Pontederia crassipes was recorded in 13 Regions, S. molesta in 14 Regions, P. stratiotes in 12 Regions, and A. filiculoides in 13 Regions. Herbarium records revealed the oldest record for P. stratiotes to be 1847, 1931 for P. crassipes, 1995 for S. molesta and there were no herbarium specimens for A. filiculoides prior to the start of the current study in 2015. We now know where these four weeds occur and how abundant they are. An objective of this research was to assess the impacts of the four invasive aquatic plants on the socio-economy of the island, mainly on rice production and fishing. Between 2016 and 2019, 102 households in three regions, Soanierana Ivongo, Foulpointe and Antananarivo, were randomly selected and questioned on the impact of these weeds in their aquatic ecosystems and their livelihoods such as fishing and rice growing. Surveys revealed that the four aquatic weeds significantly threatened household activities. On the east coast of Madagascar, the invasions of these four invasive species decreased fish and freshwater shrimp production by 82%. On the high plateau of Madagascar, they reduced rice yield by 30% despite requiring an additional expense of US$ 1,107/ha for control. Although farmers surveyed only used manual control to manage these weeds, they were receptive to other control methods, including integrated control using herbicides and biological control. Another objective of this research was to determine the ecological impacts of the four weeds and specifically if freshwater ecosystem functioning would return after control. To assess the ecological impact, between February 2017 to August 2019, on Lake Antsokafina, the following abiotic and biotic factors were considered: physico-chemistry of water, succession of macrophyte community and animal diversity. With the exception of turbidity, the values of the physico-chemical parameters of the water (pH, electrical conductivity, water temperature and turbidity), were similar between the infested zone and cleared zone. A study on the invasion process of aquatic weeds showed that the plant community succession of the lake changed over time in the areas that had been cleared. The submerged species Ceratophyllum demersum was the pioneer, followed by creeping species such as Echinochloa colona and Ipomoea aquatica, before the area was recolonized by aquatic weeds. Among the aquatic weeds, S. molesta was the most aggressive, covering 92% of the area one year after the start of the experiment. For animal diversity, bird, shrimp and fish community were assessed. The cleaning of the plots in the lake allowed the resumption of fishing activity providing 50 to 200g/catch for shrimp and from 0.25 to 0.5kg/catch for fish per person per day, while no catch was obtained in the areas infested by aquatic weeds were fishermen still attempting to harvest fish/shrimp from the aquatic weed infested areas. Three species of birds, Humblot’s Heron (Ardea humbloti), the white-faced whistling duck (Dendrocygna viduata) and red-billed teal (Anas erythrorhyncha) returned once the areas had been cleared. A manipulated outdoor as descriptor for laboratory experiment was conducted to determine the level and nature of competition of four aquatic weeds species against the indigenous floating fern, Salvinia hastata Desv. (Salviniaceae), using an additive series density model. It was shown that all four invasive species outcompeted S. hastata, with P. crassipes being 24 times more dominant, followed by P. stratiotes at 12 times, S. molesta at 8 times, and finally A. filiculoides at 1.2 times more dominant. This study provided direct evidence of the biodiversity impact of these four species and thus also provided an environmental argument for their control. Based on the findings of this study, a series of recommendations was formulated to manage the invasions of alien species in Madagascar with particular attention to invasive aquatic weeds. These recommendations mainly concern the establishment of management structures and legal instruments such as the creation of a lead government agency at national level and a cross-sectorial invasive species advisory committee, which should review legislation and regulations related to invasive species.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 879
Author(s):  
Artur Banach ◽  
Agnieszka Kuźniar ◽  
Anna Marzec-Grządziel ◽  
Anna Gałązka ◽  
Agnieszka Wolińska

As an adaptation to unfavorable conditions, microorganisms may represent different phenotypes. Azolla filiculoides L. is a hyperaccumulator of pollutants, but the functions of its microbiome have not been well recognized to date. We aimed to reveal the potential of the microbiome for degradation of organic compounds, as well as its potential to promote plant growth in the presence of heavy metals. We applied the BiologTM Phenotypic Microarrays platform to study the potential of the microbiome for the degradation of 96 carbon compounds and stress factors and assayed the hydrolytic potential and auxin production by the microorganisms in the presence of Pb, Cd, Cr (VI), Ni, Ag, and Au. We found various phenotype changes depending on the stress factor, suggesting a possible dual function of the studied microorganisms, i.e., in bioremediation and as a biofertilizer for plant growth promotion. Delftia sp., Staphylococcus sp. and Microbacterium sp. exhibited high efficacy in metabolizing organic compounds. Delftia sp., Achromobacter sp. and Agrobacterium sp. were efficient in enzymatic responses and were characterized by metal tolerant. Since each strain exhibited individual phenotype changes due to the studied stresses, they may all be beneficial as both biofertilizers and bioremediation agents, especially when combined in one biopreparation.


2021 ◽  
Vol 13 (17) ◽  
pp. 9588
Author(s):  
Sathish Sundararaman ◽  
Ponnusamy Senthil Kumar ◽  
Prabu Deivasigamani ◽  
Aravind Kumar Jagadeesan ◽  
Marshiana Devaerakkam ◽  
...  

In this work, Azolla filiculoides was used for the bioremediation of a textile effluent and as a potential sorbent for the rejection of Congo red (CR9) dye from a synthetic aqueous solution. The sorbent was characterized, and a pot culture test was carried out to assess the physiological responses in a controlled environment. The response of the plants to the exposure to the emanating pollutants was subordinate. The BOD, COD, and TDS removals were found to be 98.2%, 98.23%, and 90.29%, respectively. Moreover, the dried biomass was studied for the expulsion of CR9, and the process variables were optimized. The maximum CR9 removal was 95% at the optimal conditions of 2 g/L of the sorbent dose at acidic pH. Equilibrium data for adsorption were analyzed using a two-parameter isotherm model. It was observed that the Langmuir isotherm fit with the data (R2 = 0.98) and also had satisfactory lower error values, with its maximum sorption capacity reaching 243 mg/g. The pseudo-second-order kinetics were well fitted (R2 = 0.98). The mass transfer models and the thermodynamic parameters of the system were evaluated. The regeneration studies also showed that the uptake efficacy in the fifth cycle is reduced by 20% when compared with the first cycle. The results show that the biomass was a capable sorbent for the removal of CR9.


Sign in / Sign up

Export Citation Format

Share Document