Development of Selection Function for the Application in Cooperative Multiple Input Single Output at Energy Aware Wireless Sensor Network

2009 ◽  
Vol 26 (6) ◽  
pp. 453 ◽  
Author(s):  
MohammadRakibul Islam ◽  
Jinsang Kim
2020 ◽  
pp. 1-16
Author(s):  
Monali Prajapati ◽  
Dr. Jay Joshi

In the wireless sensor network (WSN), wireless communication is said to be the dominant power-consuming operation and it is a challenging one. Virtual Multiple-Input–Multiple-Output (V-MIMO) technology is considered to be the energy-saving method in the WSN. In this paper, a novel multihop virtual MIMO communication protocol is designed in the WSN via cross-layer design to enhance the energy efficiency, reliability, and end-to-end (ETE) and Quality of Service (QoS) provisioning. On the basis of the proposed protocol, the optimal set of parameters concerning the transmission and the overall consumed energy by each of the packets is found. Furthermore, the modeling of ETE latency and throughput of the protocol takes place with respect to the bit-error-rate (BER). A novel hybrid optimization algorithm referred as Flight Straight Moth Updated Particle Swarm Optimization (FS-MUP) is introduced to find the optimal BER that meets the QoS, ETE requirements of each link with lower power consumption. Finally, the performance of the proposed model is evaluated over the extant models in terms of Energy Consumption and BER as well.


2013 ◽  
Vol 367 ◽  
pp. 536-540 ◽  
Author(s):  
Raju Dutta ◽  
Shishir Gupta ◽  
Mukul K. Das

A challenging task in wireless sensor network (WSN) is to deliver authentic data between source nodes and sink nodes. The collision or dead lock occurs when two or more close nodes are attempted to send data at the same time to the others node. To avoid such dead lock situation in the network we propose a nonlinear mathematical model. The effect of nonlinearity often renders a periodic solution unstable for certain parametric choices even a very small change in initial conditions can lead to different result in chaotic systems which appears to exhibit chaos for a range of parametric values when long time behavior studied. The local stability conditions for the system have been discussed and analyzed. Numerically simulations have been carried out to study the complex behavior of the system for reasonable ranges of parameters in WSN.


Sign in / Sign up

Export Citation Format

Share Document