scholarly journals In vitro screening and evaluation of 37 traditional chinese medicines for their potential to activate peroxisome proliferator-activated receptors-γ

2016 ◽  
Vol 12 (46) ◽  
pp. 120 ◽  
Author(s):  
Zhining Xia ◽  
Die Gao ◽  
Yonglan Zhang ◽  
Fengqing Yang ◽  
Yexin Lin ◽  
...  
2020 ◽  
Author(s):  
Weilong Sun ◽  
Fujun Yang ◽  
Weipeng Shi ◽  
Xia Tao ◽  
Zhiwei Xi ◽  
...  

Abstract Background: Leukemia is a lethal myeloproliferative disorder, its’ relapse following chemotherapy is the major concern in clinical practice. For a long time, we found that traditional Chinese medicines such as Bushenjiedudecoction (BSJD) have significant effects on delaying relapse. However, the underlying mechanisms are not clear, which limits the clinical application of BSJD decoction. Methods: Therefore, we tried to make some explorations in this study. We isolated mesenchymal stem cells (MSC) after treated them with BSJD for proteomic analysis. And then 109 targets were screened out through analysis of the shared proteins of that affected by BSJD and those related to leukemia. Subsequently, the data were analyzed by GO functions, KEGG pathways, PPI network and topological analysis, and then some nodes were selected for animal experiment. Results: As a result, we demonstrated the effective targets of BSJD on MSC through bioinformatics analysis and explored the potential mechanism of BSJD from its influence on niches.These targets contains Hspb1、Dnmt1、Mmp2、Thbs1、Crebbp、Hmgb1、Acta2、Cdkn1b、Atg7、Tsc2 and Icam1. Afterwards, we confirmed BSJD reduced the gene expression of ICAM-1 through cultured MSC in vitro.Conclusions: We screened the potential targets of BSJD on MSC through proteomics and bioinformatics analysis, and selected some genes for experimental verification. These studies demonstrated the effect of BSJD on MSC. We hope that this research method could provide a new way of systematically studying the effects of traditional Chinese medicine on diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Wenfeng Xu ◽  
Shuo Xu ◽  
Shanshan Zhang ◽  
Xuejun Wu ◽  
Pengfei Jin

Niuhuang Jiedu tablet (NJT), a realgar (As2S2) containing Traditional Chinese Medicine (TCM), is a well-known formula. The safety of NJT is of growing concern since arsenic (As) is considered as one of the most toxic elements. NJT was demonstrated to be safer than realgar by our previous experiments and some other studies. The toxicity of realgar has been shown to be related to the amount of soluble or bioaccessible arsenic. In this study, the influences of the other TCMs in NJT on the bioaccessibility of arsenic from realgar, and the roles of gut microbiota during this process were investigated in vitro. Results showed that Dahuang (Rhei Radix et Rhizoma), Huangqin (Scutellariae Radix), Jiegeng (Platycodonis Radix), and Gancao (Glycyrrhizae Radix et Rhizoma) could significantly reduce the bioaccessibility of arsenic from realgar in artificial gastrointestinal fluids. Gut microbiota played an important role in decreasing the bioaccessibility of realgar because it was demonstrated to be able to absorb the soluble arsenic from realgar in the incubation medium. Dahuang, Huangqin, and Jiegeng could modulate the gut microbiota to enhance its arsenic absorption activity.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Angela Tesse ◽  
Ramaroson Andriantsitohaina ◽  
Thierry Ragot

Activation of peroxisome proliferator-activated receptors (PPARs), and particularly of PPARαand PPARγ, using selective agonists, is currently used in the treatment of metabolic diseases such as hypertriglyceridemia and type 2 diabetes mellitus. PPARαand PPARγanti-inflammatory, antiproliferative and antiangiogenic properties in cardiovascular cells were extensively clarified in a variety of in vitro and in vivo models. In contrast, the role of PPARδin cardiovascular system is poorly understood. Prostacyclin, the predominant prostanoid released by vascular cells, is a putative endogenous agonist for PPARδ, but only recently PPARδselective synthetic agonists were found, improving studies about the physiological and pathophysiological roles of PPARδactivation. Recent reports suggest that the PPARδactivation may play a pivotal role to regulate inflammation, apoptosis, and cell proliferation, suggesting that this transcriptional factor could become an interesting pharmacological target to regulate cardiovascular cell apoptosis, proliferation, inflammation, and metabolism.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoyan Sheng ◽  
Yuebo Zhang ◽  
Zhenwei Gong ◽  
Cheng Huang ◽  
Ying Qin Zang

Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARγandα, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO) anddb/dbmice in its water extract form. In vitro studies demonstrate that cinnamon increases the expression of peroxisome proliferator-activated receptorsγandα(PPARγ/α) and their target genes such as LPL, CD36, GLUT4, and ACO in 3T3-L1 adipocyte. The transactivities of both full length and ligand-binding domain (LBD) of PPARγand PPARαare activated by cinnamon as evidenced by reporter gene assays. These data suggest that cinnamon in its water extract form can act as a dual activator of PPARγandα, and may be an alternative to PPARγactivator in managing obesity-related diabetes and hyperlipidemia.


Sign in / Sign up

Export Citation Format

Share Document