scholarly journals Mitofusin activation enhances mitochondrial motility and promotes neuroregeneration in CMT2A

2021 ◽  
Vol 16 (11) ◽  
pp. 2201
Author(s):  
GeraldW Dorn
2009 ◽  
Vol 28 (20) ◽  
pp. 3074-3089 ◽  
Author(s):  
Xingguo Liu ◽  
David Weaver ◽  
Orian Shirihai ◽  
György Hajnóczky

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Catherine M Drerup ◽  
Amy L Herbert ◽  
Kelly R Monk ◽  
Alex V Nechiporuk

Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10, a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.


2016 ◽  
Vol 7 (5) ◽  
pp. 553-564 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Laura C. Murphy ◽  
Elise L. V. Malavasi ◽  
Shane T. O’Sullivan ◽  
Helen S. Torrance ◽  
...  

1978 ◽  
Vol 30 (1) ◽  
pp. 99-115
Author(s):  
J. Bereiter-Hahn

Mitochondrial movements have been followed by phase-contrast microscopy in living XTH-cells (Xenopus laevis tadpole-heart cells) in tissue culture. The same organelles have been viewed subsequently in electron micrographs. Locomotion of mitochondria proceeds at velocities up to 100 micrometer/min. Formation of branches of mitochondria and other shape changes may occur with the same speed. Mitochondrial motility can be classified into 4 types: (I) Alternating extension and contraction at the two ends of rod-shaped mitochondria. (2) Lateral branching. (3) Alternate stretching and contraction of arbitrary parts of a mitochondrion amounting to a kind of peristaltic action. (4) Transverse wave propagation along the organelle. Types I to 3 can be reduced to the same underlying principle; they cause locomotion. Formation of mitochondrial extensions is due to elongation of cristae. The observations are discussed in terms of 4 specific proposals. (I) Intracellular locomotion of mitochondria is caused by local enlargements and contractions of the organelles. (2) The shape changes are correlated with alterations in the arrangement of the cristae. (3) Such arrangements are not associated with overall swelling or shrinkage of the mitochondrion; they are local features. (4) Estimates of the time required for rearrangement of the inner compartment amount to less than 0.3 s for single crista arrangements during the fastest shape changes, and less than 1–3 s during slower alterations. This high velocity is in good accord with the hypothesis of energy conservation by conformational events during oxidative phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document