scholarly journals Celeboxib-mediated neuroprotection in focal cerebral ischemia: an interplay between unfolded protein response and inflammation

2022 ◽  
Vol 17 (2) ◽  
pp. 302
Author(s):  
Arsenio Fernández-López ◽  
María Santos-Galdiano ◽  
Diego Pérez-Rodríguez
2003 ◽  
Vol 23 (7) ◽  
pp. 773-779 ◽  
Author(s):  
Wulf Paschen

Shutdown of translation is a highly conserved response of cells to a severe form of metabolic, thermal, or physical stress. After the metabolic stress induced by transient cerebral ischemia, translational recovery is observed only in cells that withstand the transient interruption of blood supply, implying that restoration of translation critically determines the final outcome. On the other hand, apoptosis is believed to play a role in ischemia-induced cell death. Apoptosis is an active process that is blocked by agents known to suppress protein synthesis. Thus, the question arises whether stress-induced suppression of protein synthesis is protective or toxic for the affected cells. Accepting the notion that endoplasmic reticulum (ER) dysfunction is the mechanism underlying shutdown of translation after transient cerebral ischemia, an attempt may be made to try to solve the protein synthesis paradox by understanding the role of protein synthesis suppression in conditions associated with ER dysfunction. Endoplasmic reticulum dysfunction-induced accumulation of unfolded proteins in the ER lumen is the trigger of two signal transduction pathways: PKR-like ER kinase–induced shutdown of translation to suppress new synthesis of proteins that cannot be correctly folded, and IRE1-induced expression of ER stress genes, a protein synthesis–dependent pathway needed to restore ER functions. Together these comprise the unfolded protein response. They are also induced after transient ischemia, implying a dual effect of protein synthesis suppression, a protective and a pathologic effect during early and prolonged reperfusion.


2019 ◽  
Vol 20 (21) ◽  
pp. 5421 ◽  
Author(s):  
Pardes Habib ◽  
Ann-Sophie Stamm ◽  
Joerg B. Schulz ◽  
Arno Reich ◽  
Alexander Slowik ◽  
...  

Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis leading to impairment of endoplasmic reticulum (ER) function. The unfolded protein response (UPR) is an ER-located and cytoprotective pathway that aims to resolve ER stress. Transmembrane BAX inhibitor-1 motif-containing (TMBIM) protein family member TMBIM3/GRINA is highly expressed in the brain and mostly located at the ER membrane suppressing ER calcium release by inositol-1,4,5-trisphosphate receptors. GRINA confers neuroprotection and is regulated by erythropoietin (EPO) after murine cerebral ischemia. However, the role of GRINA and the impact of EPO treatment on the post-ischemic UPR have not been elucidated yet. We subjected GRINA-deficient (Grina−/−) and wildtype mice to transient (30 min) middle cerebral artery occlusion (tMCAo) followed by 6 h or 72 h of reperfusion. We administered EPO or saline 0, 24 and 48 h after tMCAo/sham surgery. Oxygen–glucose deprivation (OGD) and pharmacological stimulation of the UPR using Tunicamycin and Thapsigargin were carried out in primary murine cortical mixed cell cultures. Treatment with the PERK-inhibitor GSK-2606414, IRE1a-RNase-inhibitor STF-083010 and EPO was performed 1 h prior to either 1 h, 2 h or 3 h of OGD. We found earlier and larger infarct demarcations in Grina−/− mice compared to wildtype mice, which was accompanied by a worse neurological outcome and an abolishment of EPO-mediated neuroprotection after ischemic stroke. In addition, GRINA-deficiency increased apoptosis and the activation of the corresponding PERK arm of the UPR after stroke. EPO enhanced the post-ischemic activation of pro-survival IRE1a and counteracted the pro-apoptotic PERK branch of the UPR. Both EPO and the PERK-inhibitor GSK-2606414 reduced cell death and regulated Grina mRNA levels after OGD. In conclusion, GRINA plays a crucial role in post-ischemic UPR and the use of both GSK-2606414 and EPO might lead to neuroprotection.


2013 ◽  
pp. 1-1
Author(s):  
Philip Voyias ◽  
Ciara McCarthy ◽  
Adaikala Antonysunil ◽  
Warunee Kumsaiyai ◽  
Alison Harte ◽  
...  

2014 ◽  
Author(s):  
Mohammed A Alfattah ◽  
Paul Anthony McGettigan ◽  
John Arthur Browne ◽  
Khalid M Alkhodair ◽  
Katarzyna Pluta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document