scholarly journals Evaluation of Orthopedic Metal Artifact Reduction Application in Three-Dimensional Computed Tomography Reconstruction of Spinal Instrumentation: A Single Saudi Center Experience

2018 ◽  
Vol 8 ◽  
pp. 11 ◽  
Author(s):  
Amir Monir Ali

Aim of the Study: The aim of the study was to evaluate the commercially available orthopedic metal artifact reduction (OMAR) technique in postoperative three-dimensional computed tomography (3DCT) reconstruction studies after spinal instrumentation and to investigate its clinical application. Materials and Methods: One hundred and twenty (120) patients with spinal metallic implants were included in the study. All had 3DCT reconstruction examinations using the OMAR software after obtaining the informed consents and approval of the Institution Ethical Committee. The degree of the artifacts, the related muscular density, the clearness of intermuscular fat planes, and definition of the adjacent vertebrae were qualitatively evaluated. The diagnostic satisfaction and quality of the 3D reconstruction images were thoroughly assessed. Results: The majority (96.7%) of 3DCT reconstruction images performed were considered satisfactory to excellent for diagnosis. Only 3.3% of the reconstructed images had rendered unacceptable diagnostic quality. Conclusion: OMAR can effectively reduce metallic artifacts in patients with spinal instrumentation with highly diagnostic 3DCT reconstruction images.

Author(s):  
Niclas Schmitt ◽  
Charlotte S. Weyland ◽  
Lena Wucherpfennig ◽  
Christian Herweh ◽  
Martin Bendszus ◽  
...  

Abstract Background A drawback of Onyx, one of the most used embolic agents for endovascular embolization of intracranial arteriovenous malformations (AVM), is the generation of imaging artifacts (IA) in computed tomography (CT). Since these artifacts can represent an obstacle for the detection of periprocedural bleeding, this study investigated the effect of artifact reduction by an iterative metal artifact reduction (iMAR) software in CT in a brain phantom. Methods Two different in vitro models with two-dimensional tube and three-dimensional AVM-like configuration were filled with Onyx 18. The models were inserted into a brain imaging phantom and images with (n = 5) and without (n = 10) an experimental hemorrhage adjacent were acquired. Afterwards, the iMAR algorithm was applied for artifact reduction. The IAs of the original and the post-processed images were graded quantitatively and qualitatively. Moreover, qualitative definition of the experimental hemorrhage was investigated. Results Comparing the IAs of the original and the post-processed CT images, quantitative and qualitative analysis showed a lower degree of IAs in the post-processed images, i.e. quantitative analysis: 2D tube model: 23.92 ± 8.02 Hounsfield units (HU; no iMAR; mean ± standard deviation) vs. 5.93 ± 0.43 HU (with iMAR; p < 0.001); qualitative analysis: 3D AVM model: 4.93 ± 0.18 vs. 3.40 ± 0.48 (p < 0.001). Furthermore, definition of the experimental hemorrhage was better in the post-processed images of both in vitro models (2D tube model: p = 0.004; 3D AVM model: p = 0.002). Conclusion The iMAR algorithm can significantly reduce the IAs evoked by Onyx 18 in CT. Applying iMAR could thus improve the accuracy of postprocedural CT imaging after embolization with Onyx in clinical practice.


2021 ◽  
Vol 24 ◽  
pp. 100573
Author(s):  
Goli Khaleghi ◽  
Mohammad Hosntalab ◽  
Mahdi Sadeghi ◽  
Reza Reiazi ◽  
Seied Rabi Mahdavi

2017 ◽  
Vol 41 (3) ◽  
pp. 446-454 ◽  
Author(s):  
Julien Pagniez ◽  
Louise Legrand ◽  
Suonita Khung ◽  
Jean-Baptiste Faivre ◽  
Alain Duhamel ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Carsten Hackenbroch ◽  
Simone Schüle ◽  
Daniel Halt ◽  
Laura Zengerle ◽  
Meinrad Beer

2012 ◽  
Vol 39 (11) ◽  
pp. 7042-7054 ◽  
Author(s):  
Bärbel Kratz ◽  
Imke Weyers ◽  
Thorsten M. Buzug

2018 ◽  
Vol 24 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Yukiko Enomoto ◽  
Keita Yamauchi ◽  
Takahiko Asano ◽  
Katharina Otani ◽  
Toru Iwama

Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p < 0.001). Additional clinical findings were seen on CBCT images of 70.4% of patients after MAR correction. Conclusion MAR software improved image quality of CBCT images degraded by metal artifacts.


Sign in / Sign up

Export Citation Format

Share Document