Stress analysis in endodontically treated primary molar with and without stainless steel crown: A comparative finite element model study

2019 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
ReshmaM Suvarna ◽  
KSundeep Hegde ◽  
ShamS Bhat
Author(s):  
Arman Ahmadi ◽  
Narges Shayesteh Moghaddam ◽  
Mohammad Elahinia ◽  
Haluk E. Karaca ◽  
Reza Mirzaeifar

Selective laser melting (SLM) is an additive manufacturing technique in which complex parts can be fabricated directly by melting layers of powder from a CAD model. SLM has a wide range of application in biomedicine and other engineering areas and it has a series of advantages over traditional processing techniques. A large number of variables including laser power, scanning speed, scanning line spacing, layer thickness, material based input parameters, etc. have a considerable effect on SLM process materials. The interaction between these parameters is not completely studied. Limited studies on balling effect in SLM, densifications under different processing conditions, and laser re-melting, have been conducted that involved microstructural investigation. Grain boundaries are amongst the most important microstructural properties in polycrystalline materials with a significant effect on the fracture and plastic deformation. In SLM samples, in addition to the grain boundaries, the microstructure has another set of connecting surfaces between the melt pools. In this study, a computational framework is developed to model the mechanical response of SLM processed materials by considering both the grain boundaries and melt pool boundaries in the material. To this end, a 3D finite element model is developed to investigate the effect of various microstructural properties including the grains size, melt pools size, and pool connectivity on the macroscopic mechanical response of the SLM manufactured materials. A conventional microstructural model for studying polycrystalline materials is modified to incorporate the effect of connecting melt pools beside the grain boundaries. In this model, individual melt pools are approximated as overlapped cylinders each containing several grains and grain boundaries, which are modeled to be attached together by the cohesive zone method. This method has been used in modeling adhesives, bonded interfaces, gaskets, and rock fracture. A traction-separation description of the interface is used as the constitutive response of this model. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the material inside the grains. For the experimental verification, stainless steel 316L flat dog bone samples are fabricated by SLM and tested in tension. During fabrication, the power of laser is constant, and the scan speed is changed to study the effect of fabrication parameters on the mechanical properties of the parts and to compare the result with the finite element model.


2011 ◽  
Vol 418-420 ◽  
pp. 50-54
Author(s):  
Shi Hong Pang ◽  
Juan Rong Ma ◽  
Zhen Zhu Ma ◽  
Li Chuang Wang

The shear modulus of PVB and SGP interlayer is analyzed. With the same conditions of load duration and temperature, the shear modulus of SGP interlayer is about fifteen times than that of PVB interlayer. A finite element model of laminated glass is established in this paper. The simulation results show that the maximum principal stress contours of PVB laminated glass change from a circular to a petal-shaped one and those of SGP laminated glass change form a quadrangular to a square-shaped one when the temperature rises from 20 degrees Celsius to 50 degrees Celsius.


Sign in / Sign up

Export Citation Format

Share Document