scholarly journals Erratum: Plasmacytoid Dendritic Cells Contribute to the Protective Immunity Induced by Intranasal Treatment with Fc-fused Interleukin-7 against Lethal Influenza Virus Infection

2017 ◽  
Vol 17 (6) ◽  
pp. 460
Author(s):  
Moon Cheol Kang ◽  
Han Wook Park ◽  
Dong-Hoon Choi ◽  
Young Woo Choi ◽  
Yunji Park ◽  
...  
2009 ◽  
Vol 182 (2) ◽  
pp. 871-879 ◽  
Author(s):  
Amaya I. Wolf ◽  
Darya Buehler ◽  
Scott E. Hensley ◽  
Lois L. Cavanagh ◽  
E. John Wherry ◽  
...  

2012 ◽  
Vol 93 (3) ◽  
pp. 555-559 ◽  
Author(s):  
Michael M. Kaminski ◽  
Annette Ohnemus ◽  
Marius Cornitescu ◽  
Peter Staeheli

Types I and III interferons (IFNs) elicit protective antiviral immune responses during influenza virus infection. Although many cell types can synthesize IFN in response to virus infection, it remains unclear which IFN sources contribute to antiviral protection in vivo. We found that mice carrying functional alleles of the Mx1 influenza virus resistance gene partially lost resistance to infection with a highly pathogenic H7N7 influenza A virus strain if Toll-like receptor 7 (TLR7) signalling was compromised. This effect was achieved by deleting either the TLR7 gene or the gene encoding the TLR7 adaptor molecule MyD88. A similar decrease of influenza virus resistance was observed when animals were deprived of plasmacytoid dendritic cells (pDCs) at day 1 post-infection. Our results provide in vivo proof that pDCs contribute to the protection of the lung against influenza A virus infections, presumably via signals from TLR7.


2019 ◽  
Vol 88 (2) ◽  
Author(s):  
Jing Liu ◽  
Guilian Yang ◽  
Haibin Huang ◽  
Chunwei Shi ◽  
Xing Gao ◽  
...  

ABSTRACT Influenza A virus (H1N1) is an acute, highly contagious respiratory virus. The use of lactic acid bacteria (LAB) to deliver mucosal vaccines against influenza virus infection is a research hot spot. In this study, two recombinant Lactobacillus plantarum strains expressing hemagglutinin (HA) alone or coexpressing aCD11c-HA to target HA protein to dendritic cells (DCs) by fusion to an anti-CD11c single-chain antibody (aCD11c) were constructed. The activation of bone marrow dendritic cells (BMDCs) by recombinant strains and the interaction of activated BMDCs and sorted CD4+ or CD8+ T cells were evaluated through flow cytometry in vitro, and cellular supernatants were assessed by using an enzyme-linked immunosorbent assay kit. The results demonstrated that, compared to the HA strain, the aCD11c-HA strain significantly increased the activation of BMDCs and increased the production of CD4+ gamma interferon-positive (IFN-γ+) T cells, CD8+ IFN-γ+ T cells, and IFN-γ in the cell culture supernatant in vitro. Consistent with these results, the aCD11c-HA strain clearly increased the activation and maturation of DCs, the HA-specific responses of CD4+ IFN-γ+ T cells, CD8+ IFN-γ+ T cells, and CD8+ CD107a+ T cells, and the proliferation of T cells in the spleen, finally increasing the levels of specific antibodies and neutralizing antibodies in mice. In addition, the protection of immunized mice was observed after viral infection, as evidenced by improved weight loss, survival, and lung pathology. The adoptive transfer of CD8+ T cells from the aCD11c-HA mice to NOD/Lt-SCID mice resulted in a certain level of protection after influenza virus infection, highlighting the efficacy of the aCD11c targeting strategy.


Immunobiology ◽  
1998 ◽  
Vol 198 (5) ◽  
pp. 552-567 ◽  
Author(s):  
Armin Bender ◽  
Matthew Albert ◽  
Anita Reddy ◽  
Mary Feldman ◽  
Birthe Sauter ◽  
...  

2019 ◽  
Vol 93 (20) ◽  
Author(s):  
Ajitanuj Rattan ◽  
Katherine A. Richards ◽  
Zackery A. G. Knowlden ◽  
Andrea J. Sant

ABSTRACT Vaccination is widely used to generate protective immunity against influenza virus. CD4+ T cells contribute in diverse ways to protective immunity, most notably, in the provision of help for the production of neutralizing antibodies. Several recent reports have suggested that influenza virus infection elicits CD4+ T cells whose specificity only partially overlaps that of T cells elicited by vaccination. This finding has raised serious concerns regarding the utility of currently licensed inactivated influenza virus vaccines and novel protein-based vaccines. Here, using controlled animal models that allowed a broad sampling of the CD4+ T cell repertoire, we evaluated protein vaccine- versus infection-generated CD4+ T cell epitopes. Our studies revealed that all the infection-elicited CD4+ T cell epitope specificities are also elicited by protein vaccination, although the immunodominance hierarchies can differ. Finally, using a reverse-engineered influenza virus and a heterologous protein vaccination and infection challenge strategy, we show that protein vaccine-elicited CD4+ memory T cells are recalled and boosted after infection and provide early help to accelerate hemagglutinin (HA)-specific antibody responses. The early CD4+ T cell response and HA-specific antibody production are associated with lowered viral titers during the infection challenge. Our data lend confidence to the ability of current protein-based vaccines to elicit influenza virus-specific CD4+ T cells that can potentiate protective immunity upon influenza virus infection. IMPORTANCE Most current and new influenza vaccine candidates consist of a single influenza virus protein or combinations of influenza virus proteins. For these vaccines to elicit CD4+ T cells that can be recalled after infection, the peptide epitopes should be shared between the two modes of confrontation. Recently, questions regarding the relatedness of epitope selection by influenza virus infection and protein vaccination have been raised. However, the studies reported here show that the specificity of CD4+ T cells elicited by protein-based vaccines overlaps that of T cells elicited by infection and that CD4+ T cells primed by protein vaccines are recalled and contribute to protection of the host from a future infection.


Sign in / Sign up

Export Citation Format

Share Document