scholarly journals Fundamental Investigation of Short-Range Inductive Coupling Wireless Power Transmission by Using Series-Series Capacitive Compensation Topology

2019 ◽  
Vol 17 (1) ◽  
pp. 1811-1822
Author(s):  
Deeb Alashgar ◽  
Koji Fujiwara ◽  
Naoto Nagaoka
2018 ◽  
Vol 1 (4) ◽  
pp. 44 ◽  
Author(s):  
Ali Rohan ◽  
Mohammed Rabah ◽  
Muhammad Talha ◽  
Sung-Ho Kim

In this work, an advanced drone battery charging system is developed. The system is composed of a drone charging station with multiple power transmitters and a receiver to charge the battery of a drone. A resonance inductive coupling-based wireless power transmission technique is used. With limits of wireless power transmission in inductive coupling, it is necessary that the coupling between a transmitter and receiver be strong for efficient power transmission; however, for a drone, it is normally hard to land it properly on a charging station or a charging device to get maximum coupling for efficient wireless power transmission. Normally, some physical sensors such as ultrasonic sensors and infrared sensors are used to align the transmitter and receiver for proper coupling and wireless power transmission; however, in this system, a novel method based on the hill climbing algorithm is proposed to control the coupling between the transmitter and a receiver without using any physical sensor. The feasibility of the proposed algorithm was checked using MATLAB. A practical test bench was developed for the system and several experiments were conducted under different scenarios. The system is fully automatic and gives 98.8% accuracy (achieved under different test scenarios) for mitigating the poor landing effect. Also, the efficiency η of 85% is achieved for wireless power transmission. The test results show that the proposed drone battery charging system is efficient enough to mitigate the coupling effect caused by the poor landing of the drone, with the possibility to land freely on the charging station without the worry of power transmission loss.


Signals ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 209-229
Author(s):  
Mohammad Haerinia ◽  
Reem Shadid

Wireless power transmission (WPT) is a critical technology that provides an alternative for wireless power and communication with implantable medical devices (IMDs). This article provides a study concentrating on popular WPT techniques for IMDs including inductive coupling, microwave, ultrasound, and hybrid wireless power transmission (HWPT) systems. Moreover, an overview of the major works is analyzed with a comparison of the symmetric and asymmetric design elements, operating frequency, distance, efficiency, and harvested power. In general, with respect to the operating frequency, it is concluded that the ultrasound-based and inductive-based WPTs have a low operating frequency of less than 50 MHz, whereas the microwave-based WPT works at a higher frequency. Moreover, it can be seen that most of the implanted receiver’s dimension is less than 30 mm for all the WPT-based methods. Furthermore, the HWPT system has a larger receiver size compared to the other methods used. In terms of efficiency, the maximum power transfer efficiency is conducted via inductive-based WPT at 95%, compared to the achievable frequencies of 78%, 50%, and 17% for microwave-based, ultrasound-based, and hybrid WPT, respectively. In general, the inductive coupling tactic is mostly employed for transmission of energy to neuro-stimulators, and the ultrasonic method is used for deep-seated implants.


Author(s):  
Jin-Wook Kim ◽  
Hyeon-Chang Son ◽  
Seung-Ho Jeong ◽  
Seung-Gyun Kim ◽  
Kwan-Ho Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document