dynamic charging
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 67)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Xingzhen Bai ◽  
Zidong Wang ◽  
Lei Zou ◽  
Hongjian Liu ◽  
Qiao Sun ◽  
...  

AbstractThis paper is concerned with the electric vehicle (EV) charging station planning problem based on the dynamic charging demand. Considering the dynamic charging behavior of EV users, a dynamic prediction method of EV charging demand is proposed by analyzing EV users’ travel law via the trip chain approach. In addition, a multi-objective charging station planing problem is formulated to achieve three objectives: (1) maximize the captured charging demands; (2) minimize the total cost of electricity and the time consumed for charging; and (3) minimize the load variance of the power grid. To solve such a problem, a novel method is proposed by combining the hybrid particle swarm optimization (HPSO) algorithm with the entropy-based technique for order preference by similarity to ideal solution (ETOPSIS) method. Specifically, the HPSO algorithm is used to obtain the Pareto solutions, and the ETOPSIS method is employed to determine the optimal scheme. Based on the proposed method, the siting and sizing of the EV charging station can be planned in an optimal way. Finally, the effectiveness of the proposed method is verified via the case study based on a test system composed of an IEEE 33-node distribution system and a 33-node traffic network system.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5660
Author(s):  
Massimo Ceraolo ◽  
Valentina Consolo ◽  
Mauro Di Monaco ◽  
Giovanni Lutzemberger ◽  
Antonino Musolino ◽  
...  

The inductive power transfer (IPT) is expected to greatly contribute towards electrification in transportation. In fact, IPT charging technology has the potential to overcome several limitations of conductive charging: in particular, the process can be fully automatable, and both static and dynamic charging are allowed, thus reducing the size of the battery pack. Additionally, safety is increased due to the absence of safety issues related to loss of cable insulation or to the unwanted interruption of the plug-socket connection. This paper presents, from a systematic approach, the design and realization of a prototype for IPT charging of autonomous shuttles in automated warehouses. First of all, the typical mission profile of the shuttle was properly identified, and a storage system based on power-oriented electrochemical cells was sized. Based on that, the architecture of the IPT system was chosen, both for transmitting and receiving sections. The pads were designed for this purpose, by considering the geometric constraints imposed by the manufacturer, through the utilization of the finite elements method. Finally, the power electronic circuitry was also designed. Numerical simulations of the components, as well as of the complete system, were performed and a prototype was built to widely verify the correspondence of the simulation outputs with the results obtained from an experimental measurements campaign.


Author(s):  
Sayali Ashok Jawale ◽  
Sanjay Kumar Singh ◽  
Pushpendra Singh

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3516
Author(s):  
Bálint Csonka

The adoption of electric buses in public transport requires careful planning for the bus fleet and charging infrastructure. A mathematical model of an urban bus service was developed to support the deployment of charging infrastructure. The novelty of the model is that it incorporates infrastructure elements for both static and dynamic charging technologies at the same time. The model supports the electrification of the bus lines without route and schedule adjustments. The volume of charged energy at charging units is considered as a variable in the objective function to determine the location of charging units at minimum cost. The model was verified by a case study based on actual bus service data. It was found that the use of static chargers is more favorable if the cost of a static charging unit is less than the cost of a dynamic charger with a length of 1600 m and the charging power of static chargers is three times greater than the charging power of dynamic chargers. The relationship between charging power and the length of the dynamic charging unit was analyzed. It was noted that the use of charging power higher than 162.5 kW at dynamic charging units is not necessary.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3362
Author(s):  
Alberto Danese ◽  
Michele Garau ◽  
Andreas Sumper ◽  
Bendik Nybakk Torsæter

Full electrification of the transport sector is a necessity to combat climate change and a pressing societal issue: climate agreements require a fuel shift of all the modes of transport, but while uptake of passenger electric vehicles is increasing, long haul trucks rely almost completely on fossil fuels. Providing highways with proper charging infrastructure for future electric mobility demand is a problem that is not fully investigated in literature: in fact, previous work has not addressed grid planning and infrastructure design for both passenger vehicles and trucks on highways. In this work, the authors develop a methodology to design the electrical infrastructure that supplies static and dynamic charging for both modes of transport. An algorithm is developed that selects substations for the partial electrification of a highway and, finally, the design of the electrical infrastructure to be implemented is produced and described, assessing conductors and substations sizing, in order to respect voltage regulations. The system topology of a real highway (E18 in Norway) and its traffic demand is analyzed, together with medium-voltage substations present in the area.


Sign in / Sign up

Export Citation Format

Share Document