scholarly journals Experiments under Extreme Conditions of Very Low Temperature and Ultra High Pressure Using Diamond Anvil Cell.

1994 ◽  
Vol 3 (4) ◽  
pp. 375-377
Author(s):  
Kiichi Amaya ◽  
Katsuya Shimizu ◽  
Mamoru Ishizuka ◽  
Shoichi Endo
1999 ◽  
Vol 13 (29n31) ◽  
pp. 3623-3625 ◽  
Author(s):  
K. Amaya ◽  
K. Shimizu ◽  
M. I. Eremets

Techniques of producing ultra-high pressure at very low temperature and measuring method of electrical resistance and magnetization of samples confirmed in the used diamond anvil ceil (DAC) are shortly described. Experimental results on simple molecular systems such as iodine, sulfur, oxygen and organic iodanil are reviewed as typical example of pressure induced superconductivity.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 259-261
Author(s):  
KATSUYA SHIMIZU

Experimental results in search for pressure-induced superconductivity are reviewed. Typical examples are simple inorganic and organic molecular crystals, magnetic metals, and elements. We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond-anvil cell (DAC) on a powerful 3 He /4 He dilution refrigerator. Using the newly developed apparatus and techniques, we have studied superconductivity in various materials in various pressure range. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss about examples of pressure-induced superconductivity in simple metals.


2019 ◽  
Vol 234 (4) ◽  
pp. 277-280 ◽  
Author(s):  
Laura Henry ◽  
Volodymyr Svitlyk ◽  
Gaston Garbarino ◽  
David Sifre ◽  
Mohamed Mezouar

Abstract Single crystals of solid chlorine (Cl2) were synthesized at room temperature and high pressure (HP, P=1.45 GPa) in a diamond anvil cell (DAC). At these conditions Cl2 adapts the same structure as its corresponding low-temperature (LT) ambient pressure modification (T<172 K), as concluded from HP single crystal diffraction experiments. Namely, it crystallizes in an orthorhombic symmetry (Cmce spacegroup) with Cl2 molecules forming monolayers parallel to the bc plane and this structure is preserved up to at least 64 GPa. The pressure of 1.45 GPa is to be considered as a solidification point of liquid Cl2 at room temperature.


Sign in / Sign up

Export Citation Format

Share Document