Investigation of a Coastal Karst Area to Delineate Preferential Groundwater Flow‐Paths Using Marine and Terrestrial Electrical Resistivity Tomography

2012 ◽  
Author(s):  
Yvonne O'Connell ◽  
Eve Daly ◽  
Garret Duffy ◽  
Tiernan Henry
Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 414 ◽  
Author(s):  
Robert ◽  
Paulus ◽  
Bolly ◽  
Koo Seen Lin ◽  
Hermans

Since salt cannot always be used as a geophysical tracer (because it may pollute the aquifer with the mass that is necessary to induce a geophysical contrast), and since in many contaminated aquifer salts (e.g., chloride) already constitute the main contaminants, another geophysical tracer is needed to force a contrast in the subsurface that can be detected from surface geophysical measurements. In this context, we used heat as a proxy to image and monitor groundwater flow and solute transport in a shallow alluvial aquifer (< 10 m deep) with the help of electrical resistivity tomography (ERT). The goal of our study is to demonstrate the feasibility of such methodology in the context of the validation of the efficiency of a hydraulic barrier that confines a chloride contamination to its source. To do so, we combined a heat tracer push/pull test with time-lapse 3D ERT and classical hydrogeological measurements in wells and piezometers. Our results show that heat can be an excellent salt substitution tracer for geophysical monitoring studies, both qualitatively and semi-quantitatively. Our methodology, based on 3D surface ERT, allows to visually prove that a hydraulic barrier works efficiently and could be used as an assessment of such installations.


2013 ◽  
Vol 71 (6) ◽  
pp. 2797-2806 ◽  
Author(s):  
Mi Kyung Park ◽  
Samgyu Park ◽  
Myeong-Jong Yi ◽  
Changryol Kim ◽  
Jung-Sul Son ◽  
...  

2022 ◽  
Vol 9 (2) ◽  
pp. 3281-3291
Author(s):  
Wahyu Wilopo ◽  
Doni Prakasa Eka Putra ◽  
Teuku Faisal Fathani ◽  
Slamet Widodo ◽  
Galeh Nur Indriatno Putra Pratama ◽  
...  

The presence of natural cavities in karst morphology may cause severe civil engineering and environmental management problems. Karst formations will limit the expansion of urbanization, especially infrastructure development in limestone areas. Geophysical methods, especially electrical resistivity tomography (ERT) techniques, are effective and efficient solutions to detect voids below the surface. This study aimed to develop a subsidence hazard map as basic information for infrastructure development. The identification was made by measuring electrical resistivity tomography on eight profiles in the infrastructure development plan. In addition, it was also supported by geological mapping, particularly the structural geology and types of rocks around the site. The research area consists of massive limestone, bedded limestone, and cavity limestone with generally north-south joints. The analysis of geological mapping data and electrical resistivity tomography measurements showed that the cavity limestone was identified with a north-south elongated pattern in line with the fracture pattern found on the surface at the research area. The surface lithology type, the geological structures density, and the subsurface lithology were used to develop a subsidence hazard map. This information is beneficial in determining the safe location of infrastructure development based on disaster risk mitigation.


Sign in / Sign up

Export Citation Format

Share Document