scholarly journals MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS

2008 ◽  
Vol 45 (5) ◽  
pp. 1443-1482
Author(s):  
Oana Constantinescu
Keyword(s):  
2011 ◽  
Vol 08 (04) ◽  
pp. 753-772 ◽  
Author(s):  
A. SOLEIMAN

The present paper deals with an intrinsic investigation of the notion of a parallel π-vector field on the pullback bundle of a Finsler manifold (M, L). The effect of the existence of a parallel π-vector field on some important special Finsler spaces is studied. An intrinsic investigation of a particular β-change, namely the energy β-change ([Formula: see text]with[Formula: see text] being a parallel π-vector field), is established. The relation between the two Barthel connections Γ and [Formula: see text], corresponding to this change, is found. This relation, together with the fact that the Cartan and the Barthel connections have the same horizontal and vertical projectors, enable us to study the energy β-change of the fundamental linear connection in Finsler geometry: The Cartan connection, the Berwald connection, the Chern connection and the Hashiguchi connection. Moreover, the change of their curvature tensors is concluded. It should be pointed out that the present work is formulated in a prospective modern coordinate-free form.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Mallikarjun Yallappa Kumbar ◽  
Narasimhamurthy Senajji Kampalappa ◽  
Thippeswamy Komalobiah Rajanna ◽  
Kavyashree Ambale Rajegowda

We consider a Finsler space equipped with a Generalized Conformalβ-change of metric and study the Killing vector fields that correspond between the original Finsler space and the Finsler space equipped with Generalized Conformalβ-change of metric. We obtain necessary and sufficient condition for a vector field Killing in the original Finsler space to be Killing in the Finsler space equipped with Generalized Conformalβ-change of metric.


2014 ◽  
Vol 26 (5) ◽  
Author(s):  
Shaoqiang Deng ◽  
Ming Xu

AbstractIn this paper, we study Clifford–Wolf translations of Finsler spaces. We give a characterization of those Clifford–Wolf translations generated by Killing vector fields. In particular, we show that there is a natural interrelation between the local one-parameter groups of Clifford–Wolf translations and the Killing vector fields of constant length. In the special case of homogeneous Randers spaces, we give some explicit sufficient and necessary conditions for a Killing vector field to have a constant length, in which case the local one-parameter group of isometries generated by the Killing field consist of Clifford–Wolf translations. Finally, we construct explicit examples to explain some of the results of this paper.


2001 ◽  
Vol 08 (01) ◽  
pp. 63-71
Author(s):  
Andrzej Jamiołkowski

An enormous variety of nonlinear dynamical systems can be — by suitable introduction of new coordinates — represented in the form of polynomial systems and then can be reduced to Volterra systems, where the nonlinearities are at most quadratic. In this paper, we discuss a link between systems of differential equations with homogeneous quadratic polynomial vector fields and non-associative algebras on the one hand and the question of representation of such systems as geodesics in some Finsler spaces on the other hand.


2020 ◽  
Vol 17 (02) ◽  
pp. 2050019
Author(s):  
Gauree Shanker ◽  
Sarita Rani

The study of curvature properties of homogeneous Finsler spaces with [Formula: see text]-metrics is one of the central problems in Riemann–Finsler geometry. In this paper, the existence of invariant vector fields on a homogeneous Finsler space with square metric is proved. Further, an explicit formula for [Formula: see text]-curvature of a homogeneous Finsler space with square metric is established. Finally, using the formula of [Formula: see text]-curvature, the mean Berwald curvature of aforesaid [Formula: see text]-metric is calculated.


2014 ◽  
Vol 57 (2) ◽  
pp. 457-464 ◽  
Author(s):  
MING XU ◽  
SHAOQIANG DENG

AbstractIn this paper, we first deduce a formula of S-curvature of homogeneous Finsler spaces in terms of Killing vector fields. Then we prove that a homogeneous Finsler space has isotropic S-curvature if and only if it has vanishing S-curvature. In the special case that the homogeneous Finsler space is a Randers space, we give an explicit formula which coincides with the previous formula obtained by the second author using other methods.


2017 ◽  
Vol 15 (01) ◽  
pp. 1850003 ◽  
Author(s):  
Nicoleta Voicu

The paper aims to initiate a systematic study of conformal mappings between Finsler spacetimes and, more generally, between pseudo-Finsler spaces. This is done by extending several results in pseudo-Riemannian geometry which are necessary for field-theoretical applications and by proposing a technique that reduces some problems involving pseudo-Finslerian conformal vector fields to their pseudo-Riemannian counterparts. Also, we point out, by constructing classes of examples, that conformal groups of flat (locally Minkowskian) pseudo-Finsler spaces can be much richer than both flat Finslerian and pseudo-Euclidean conformal groups.


Author(s):  
Sarita Rani ◽  
Gauree Shanker

The study of curvature properties of homogeneous Finsler spaces with $(\alpha, \beta)$-metrics is one of the central problems in Riemann-Finsler geometry. In the present paper, the existence of invariant vector fields on a homogeneous Finsler space with Randers changed square metric has been proved. Further, an explicit formula for $S$-curvature of Randers changed square metric has been established. Finally, using the formula of $S$-curvature, the mean Berwald curvature of afore said $(\alpha, \beta)$-metric has been calculated. 


Sign in / Sign up

Export Citation Format

Share Document