scholarly journals A PARALLEL HYBRID METHOD FOR EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE MAPPINGS IN HILBERT SPACE

2015 ◽  
Vol 52 (2) ◽  
pp. 373-388 ◽  
Author(s):  
Dang Van Hieu
Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 480
Author(s):  
Manatchanok Khonchaliew ◽  
Ali Farajzadeh ◽  
Narin Petrot

This paper presents two shrinking extragradient algorithms that can both find the solution sets of equilibrium problems for pseudomonotone bifunctions and find the sets of fixed points of quasi-nonexpansive mappings in a real Hilbert space. Under some constraint qualifications of the scalar sequences, these two new algorithms show strong convergence. Some numerical experiments are presented to demonstrate the new algorithms. Finally, the two introduced algorithms are compared with a standard, well-known algorithm.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Bashir Ali

We prove a new strong convergence theorem for an element in the intersection of the set of common fixed points of a countable family of nonexpansive mappings, the set of solutions of some variational inequality problems, and the set of solutions of some equilibrium problems using a new iterative scheme. Our theorem generalizes and improves some recent results.


Sign in / Sign up

Export Citation Format

Share Document