PROPERTIES AND CLASSIFICATION OF FTVE SOILS ON ALLUVIAL LANDFORMS IN CENTRAL NIGERIA

1987 ◽  
Vol 67 (2) ◽  
pp. 249-261 ◽  
Author(s):  
T. A. OKUSAMI ◽  
R. H. RUST ◽  
A. S. R. JUO

Five soils formed in alluvium in central Nigeria are described, characterized and classified. One soil is on the present floodplain of the River Benue, while the others are on terraces of both the River Niger and the River Benue and their tributaries. Soils have a preponderance of mottles, sesquioxidic nodules and/or concretions and grayer colors of low chromas. Particle size distribution on a clay-free basis was used in addition to morphology and organic carbon distribution to determine the homogeneity of parent materials. The soil on the floodplain and two others on terraces are all formed in two different parent materials. Two other soils on terraces are formed in homogeneous parent materials. Most soils have a generally low effective cation exchange capacity, but higher values are found in neutral to moderately alkaline profiles containing smectite. The clay fractions are a mixture of kaolinite, smectite and some hydrous mica. Two soils are classified as Ustifluvents. The others are Tropaquepts, Plinthaquults and Argiaquolls. Equivalent FAO/UNESCO classifications are Dystric Fluvisols, Dystric Gleysols, Eutric Planosols, Plinthic Gleysols and Mollic Gleysols. Key words: Alluvium, hydromorphic, Nigeria, mixed clay mineralogy, classification

1984 ◽  
Vol 56 (4) ◽  
pp. 245-254
Author(s):  
Raili Jokinen

Topsoil and subsoil samples were taken at 382 sites from the agricultural area of Viikki Experimental Farm, University of Helsinki. The samples were determinated for particle size distribution, pH(CaCl2), organic C %, at pH 7 exchangeable Ca, Mg and K, effective cation exchange capacity (ECEC), exchange acidity (AI + H) and plant available (Bray 1) P. The differences between topsoil and subsoil were studied taking into consideration the fertilization and liming during the past ten years before sampling. The correlations between soil characteristics were also studied. The clay (< 2 µm) and silt (2—20 µm) contents, exchangeable Mg and exchange acidity were lower in the topsoil than in the subsoil; as for the remaining characteristics, the values for topsoil were higher than those for subsoil. The subsoil seemed to be more heterogenic than the topsoil. There was a closer correlation between exchangeable Ca, Mg and K and the clay content in the subsoil than in the topsoil. In Litorina soils, there was a weak correlation between exchangeable cations and clay. It is more difficult to predict the cation contents on the basis of soil particle size distribution in soils cropped intensively, since fertilization and liming have changed the original contents. Vertical movement of applied Ca occurred slightly, possibly because the topsoils were rich in organic C. There was some correlation between organic C and exchangeable Mg or K, indicating a minor effect of organic matter on the leaching of these cations. The plant available P content of the subsoil was about 10 % of that of the topsoil irrespective of the amount of P applied. Clay and organic C contents were the main constituents of effective cation exchange capacity in the topsoil; in the subsoil the significance of clay was greatest.


HortScience ◽  
2012 ◽  
Vol 47 (12) ◽  
pp. 1782-1788 ◽  
Author(s):  
Linda L. Taylor ◽  
Alexander X. Niemiera ◽  
Robert D. Wright ◽  
J. Roger Harris

Pine tree substrate (PTS) is a relatively new alternative to the commonly used pine bark and peat-based substrates for container crop production. Physical and chemical properties of freshly manufactured PTS have been studied; however, this new substrate will sometimes be manufactured and stored for later use by growers. The objective of this research was to determine how chemical and physical properties of PTS were affected by storage duration with or without amendments of limestone or peatmoss. We also studied how the growth of marigold was influenced by PTS storage time and by lime and peat amendments. Substrate properties studied were pH, cation exchange capacity (CEC), electrical conductivity (EC), carbon-to-nitrogen ratio (C:N), bulk density (BD), and particle size distribution. Pine tree substrate was manufactured by hammermilling chips of ≈15-year-old loblolly pine trees (Pinus taeda L.) through two screen sizes, 4.76 mm (PTS) and 15.9 mm [amended with peat (PTSP)]. Pine tree substrate and PTSP were amended with lime at five rates and a peat–perlite mix (PL) served as a control treatment. Substrates were prepared, placed in plastic storage bags, and stored on shelves in an open shed in Blacksburg, VA. Substrates were subsampled at 1, 42, 84, 168, 270, and 365 days after storage. At each subsampling day, twelve 1-L containers were filled with a subsample of each treatment. Six of the 12 were left fallow and six were planted with 14-day-old marigold (Tagetes erecta L. ‘Inca Gold’) seedlings. Substrate was also collected for analysis of CEC, C:N, BD, and particle size distribution. The pH of non-limed PTS decreased during storage, and at least 1 kg·m−3 lime was needed to maintain PTS pH 5.4 or greater over the 365-day storage period (Day 1 pH = 5.8) and 2 to 4 kg·m−3 was needed to maintain PTSP pH 5.4 or greater for 365 days (Day 1 pH = 5.2). EC measurements were highest at Day 1 (1.02 to 1.21 dS·m−1) in all treatments and decreased by Day 42. Cation exchange capacity decreased over time in non-limed PTS and PTSP. Carbon-to-nitrogen ratio and BD remained the same over time for all treatments. There were minor changes in particle size distribution for limed PTS. Marigold growth in all limed PTS and PTSP treatments was equal to or greater than in PL, except at Day 1; the lower growth in PTS and PTSP at Day 1 compared with PL suggests that freshly manufactured PTS may contain a phytotoxic substance that was not present in PTS by Day 42. Pine tree substrate and PTSP are relatively stable when stored as described previously, except for a pH decrease that can be prevented with additions of lime before storage.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


1993 ◽  
Vol 73 (4) ◽  
pp. 447-457 ◽  
Author(s):  
W. E. Dubbin ◽  
A. R. Mermut ◽  
H. P. W. Rostad

Soils developed from parent materials derived from uppermost Cretaceous and Tertiary sedimentary rocks have been delineated from those which do not contain any of these younger sediments. The present study was initiated to determine the validity of this delineation. Parent materials from six locations in southwestern Saskatchewan were collected to determine their general chemical and physical properties. Clay fractions from each of these six parent materials were then subjected to detailed chemical and mineralogical analyses. The two parent materials containing the greatest amount of post-Bearpaw bedrock sediments (Jones Creek, Scotsguard) were characterized by substantially more organic carbon and less CaCO3. The presence of coal and the absence of carbonates in local bedrocks were considered to be the source of these deviations. In general, fine clays were comprised of 64–69% smectite, 14–21% illite and 10–13% kaolinite and coarse clay contained 32–39% smectite, 25–34% illite and 11–14% kaolinite. An exception was found in two fine clays which had less smectite but 3–6% vermiculite. Total iron content of the fine clays ranged from 7.16 to 8.11% expressed as Fe2O3. However, only a small fraction of this iron was extractable using the CDB technique. There were no substantial differences in surface areas or CECs of the clay fractions. Despite minor differences in the chemistry and mineralogy of these six parent materials, a separation of the soil associations does not appear to be warranted. Key words: Parent materials, uppermost Cretaceous, Tertiary, bedrock, clay mineralogy


2018 ◽  
Vol 156 ◽  
pp. 03046 ◽  
Author(s):  
Widyawanto Prastistho ◽  
Winarto Kurniawan ◽  
Hirofumi Hinode

The influences of mechanical milling on Indonesian Natural Bentonite (INB) characteristics and manganese (Mn) removal from acid mine drainage (AMD) were investigated. The INB characteristics were observed by scanning electron microscope (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption for specific surface area (SSA) and microporosity measurement, cation exchange capacity (CEC) and particle size distribution (PSD) analyzer. Four minutes milling with frequency 20 Hz on INB caused morphological change which showed more crumbled and destructed particle, lost the (001) peak but still retained the (100) peak that indicated delamination of montmorillonite mineral without breaking the tetrahedral-octahedral-tetrahedral (T-O-T) structure, rose the CEC from 28.49 meq/100g to 35.51 meq/100g, increase in the SSA from 60.63 m2/g to 104.88 m2/g, significant increase in microporosity which described in the t plots and decrease in the mean particle size distribution peak from 49.28 μm to 38.84 μm. The effect of contact time and effect of adsorbent dosage on Mn sorption was studied. Both unmilled and milled samples reached equilibrium at 24 hours and the pH rose from 4 to 7 in first 30 minutes. The Mn removal percentage increased significantly after milling. Using Langmuir isotherm, the maximum adsorbed metals (qmax) also increased from 0.570 to 4.219 mg/g.


2021 ◽  
Vol 23 (3) ◽  
pp. 368-374
Author(s):  
A. BASUMATARY ◽  

Two hundred fifty geo-referenced surfaces (0-15 cm) soil samples were collected and analysed for macronutrients and micronutrients to study fertility status in soils of Dima Hasao district of Assam and their relationship with some important soil properties. Soils of the district were found to be extremely acidic to slightly acidic in reaction with a low to high organic carbon content and low in cation exchange capacity. The soil of the district indicated that the available nitrogen, phosphorus and potassium status was observed to the tune of 14.0 %,7.2% and 67.2% under low and 86.0 %, 92.8 % and 32.8 %under medium categories, respectively. The overall percent deficient of exchangeable calcium, magnesium and available sulphur in soils was 25.6, 30.4 and 6.8 %, respectively. Based on critical limit, all soils were adequately supplied with DTPA-extractable Fe, Mn and Cu content. In respect of zinc and boron, soils exhibited 90.4 and 73 per cent under sufficient, while, 2.4 and 12 per cent were found deficient in DTPA -Zn and HWS-B, respectively. Soil pH and EC showed positive correlation with macro nutrients and negative correlation with micronutrients. The macro- and micronutrient showed significant positive relation with soil organic carbon and cation exchange capacity.


Sign in / Sign up

Export Citation Format

Share Document