scholarly journals Soil properties and aspen development five years after compaction and forest floor removal

1998 ◽  
Vol 78 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Douglas M. Stone ◽  
John D. Elioff

Forest management activities that decrease soil porosity and remove organic matter have been associated with declines in site productivity. In the northern Lake States region, research is in progress in the aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forest type to determine effects of soil compaction and organic matter removal on soil properties and growth of aspen suckers, associated woody species, herbaceous vegetation, and on stand development. Four treatments: (1) total tree harvest (TTH); (2) TTH plus soil compaction (CPT); (3) TTH plus forest floor removal (FFR); and (4) TTH plus CPT + FFR were applied after winter-harvest of a 70-yr-old aspen stand growing on a loamy sand with a site index(age50) of 20.7 m. The CPT treatment significantly increased bulk density and soil strength of the surface 30 cm of soil and neither have recovered during the 5 yr since treatment. The CPT plots had 19.6 thousand (k) suckers ha−1, less than half that of the TTH and FFR treatments; mean diameter (19.4 mm) and height (271 cm) were greatest on the TTH plots. The disturbance treatments (CPT, FFR, and CPT + FFR) each reduced biomass of foliage, stems, and total suckers compared with the TTH treatment. Total aboveground biomass (herbs + shrubs + suckers) was less than half that of TTH plots. There were 5.0 k saplings (suckers >2.5 cm DBH) ha−1 on the TTH plots, but fewer than 1.0 k ha−1 in the other treatments. The disturbance treatments decreased 5-yr growth of potential crop trees, delayed early stand development, and temporarily reduced stockability and site productivity of an aspen ecosystem. Key words: Soil compaction, organic matter removal, site productivity, stand development

2002 ◽  
Vol 78 (6) ◽  
pp. 886-891 ◽  
Author(s):  
Douglas M Stone ◽  
Richard Kabzems

Forest management practices that decrease soil porosity and remove organic matter can reduce site productivity. We evaluated effects of four treatments—merchantable bole harvest (MBH) with three levels of soil compaction (none, light, or heavy), and total woody vegetation harvest plus forest floor removal (FFR)—on fifth-year regeneration and growth of aspen (Populus tremuloides Michx.) growing on soils with similar textures (20–40 cm silt loam over clay loam till) in northern Minnesota (MN) and northeastern British Columbia (BC). Overall mean sucker density was significantly greater in BC than in MN, and mean height was significantly lower. Soil compaction did not affect sucker density in BC, but significantly reduced it in MN, primarily due to late spring treatment. In BC, mean sucker heights generally decreased with level of compaction, but only the differences between non-compacted and the heavy compaction treatments were significant. On the MN plots, sucker heights were reduced significantly by compaction. Treatment responses were similar on both sites: (1) the greatest sucker densities were in the FFR treatment; (2) greatest mean heights were on the non-compacted MBH plots and were significantly greater than those in the FFR treatment; (3) sucker heights generally decreased with level of compaction; and (4) soil compaction decreased the number of suckers that had reached a dbh of 25 mm after five years and will likely delay future stand development and reduce site productivity. Key words: sustainable management, organic matter removal, soil compaction, aspen sucker density, height growth


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


2005 ◽  
Vol 35 (8) ◽  
pp. 2030-2044 ◽  
Author(s):  
Sybille Haeussler ◽  
Richard Kabzems

Organic matter removal and reduced soil aeration porosity during logging are important factors influencing the sustained productivity of managed forest ecosystems. We studied the 4-year effect of these factors on diversity and composition of a trembling aspen (Populus tremuloides Michx.) plant community in northeastern British Columbia, Canada, in a completely randomized experiment with three levels of organic matter removal (tree stems; stems and slash; stems, slash, and forest floor) and three levels of soil compaction (none; intermediate (2-cm impression); heavy (5-cm impression)). Tree stem removal caused the greatest change in species diversity (30% of variance; ANOVA p ≤ 0.01), increasing the dominance of aspen and Calamagrostis canadensis (Michx.) Beauv. over other species. Slash removal had little effect. Forest floor removal caused the greatest compositional change (37% of variance; MANOVA p = 0.001), favoring ruderal over bud-banking species. Presence or absence of forest floor better explained these changes than any soil physical or chemical parameter. Although dominance of aspen over Calamagrostis was positively correlated with soil aeration porosity (R2 = 0.50, n = 27, p < 0.001), there were few differences between intermediate and heavy compaction. In this ecosystem, disturbances that reduce forest floor thickness without compacting soils will likely optimize plant species diversity and enhance aspen regrowth.


2005 ◽  
Vol 35 (8) ◽  
pp. 2045-2055 ◽  
Author(s):  
Richard Kabzems ◽  
Sybille Haeussler

Retaining organic matter and preventing soil compaction are important factors affecting the sustainability of managed forests. To assess how these factors affect short-term ecosystem dynamics, pre-treatment and 1 year and 5 year post-treatment soil properties and post-treatment tree growth responses were examined in a boreal trembling aspen (Populus tremuloides Michx.) dominated ecosystem in northeastern British Columbia, Canada. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash, and forest floor) and three levels of soil compaction (none, intermediate (2-cm impression), heavy (5-cm impression)). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen and white spruce (Picea glauca (Moench) Voss). The compaction treatments had no effect on aspen regeneration density. At year 5, heights of both aspen and white spruce were negatively correlated (r2 > 0.31, p < 0.0001) with upper mineral soil bulk density and were lowest on forest floor removal treatments, where minimal recovery from compaction was observed. There was some evidence for recovery of soil properties to preharvest conditions where expansion of herbaceous vegetation increased soil organic matter.


2006 ◽  
Vol 36 (3) ◽  
pp. 529-550 ◽  
Author(s):  
Robert L Fleming ◽  
Robert F Powers ◽  
Neil W Foster ◽  
J Marty Kranabetter ◽  
D Andrew Scott ◽  
...  

We examined fifth-year seedling response to soil disturbance and vegetation control at 42 experimental locations representing 25 replicated studies within the North American Long-Term Soil Productivity (LTSP) program. These studies share a common experimental design while encompassing a wide range of climate, site conditions, and forest types. Whole-tree harvest had limited effects on planted seedling performance compared with the effects of stem-only harvest (the control); slight increases in survival were usually offset by decreases in growth. Forest-floor removal improved seedling survival and increased growth in Mediterranean climates, but reduced growth on productive, nutrient-limited, warm–humid sites. Soil compaction with intact forest floors usually benefited conifer survival and growth, regardless of climate or species. Compaction combined with forest-floor removal generally increased survival, had limited effects on individual tree growth, and increased stand growth in Mediterranean climates. Vegetation control benefited seedling growth in all treatments, particularly on more productive sites, but did not affect survival or alter the relative impact of organic matter removal and compaction on growth. Organic matter removal increased aspen coppice densities and, as with compaction, reduced aspen growth.


2004 ◽  
Vol 34 (5) ◽  
pp. 1136-1149 ◽  
Author(s):  
Jeffrey P Battigelli ◽  
John R Spence ◽  
David W Langor ◽  
Shannon M Berch

This study examines the short-term impact of forest soil compaction and organic matter removal on soil mesofauna, in general, and oribatid mite species, in particular. Both soil compaction and organic matter removal reduced the density of soil mesofauna. Stem-only harvesting reduced total mesofauna densities by 20% relative to uncut forest values. A combination of whole-tree harvest and forest floor removal with heavy soil compaction significantly reduced total soil mesofauna densities by 93% relative to the uncut forest control. Removal of the forest floor represents a substantial loss of habitat for most soil mesofauna. The forest floor apparently buffered the mineral soil by limiting both the impact of soil compaction and fluctuations in soil temperature and moisture. The relative abundance of Prostigmata and Mesostigmata increased with treatment severity, whereas that of Oribatida decreased. Species richness of the oribatid mite fauna was reduced as the severity of treatments increased. The number of rare oribatid species (those representing <1% of the total oribatid mite sample) decreased by 40% or more relative to the uncut forest control. Evenness also decreased as treatment severity increased. Oppiella nova and Suctobelbella sp. near acutidens were the dominant oribatid species in both the forest floor and mineral soil, regardless of treatment. Soil compaction and organic matter removal significantly impacted the density and diversity of soil mesofauna and oribatid mite fauna in the short term at these study sites.


Pedobiologia ◽  
2004 ◽  
Vol 48 (2) ◽  
pp. 121-128 ◽  
Author(s):  
Robert J Eaton ◽  
Mary Barbercheck ◽  
Marilyn Buford ◽  
William Smith

Sign in / Sign up

Export Citation Format

Share Document