Soil compaction and organic matter removal effects on soil properties and tree growth in the Interior Douglas-fir zone of southern British Columbia

2021 ◽  
Vol 494 ◽  
pp. 119268
Author(s):  
Brian Wallace ◽  
Chuck Bulmer ◽  
Graeme Hope ◽  
Mike Curran ◽  
Tim Philpott ◽  
...  
2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


1998 ◽  
Vol 78 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Douglas M. Stone ◽  
John D. Elioff

Forest management activities that decrease soil porosity and remove organic matter have been associated with declines in site productivity. In the northern Lake States region, research is in progress in the aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forest type to determine effects of soil compaction and organic matter removal on soil properties and growth of aspen suckers, associated woody species, herbaceous vegetation, and on stand development. Four treatments: (1) total tree harvest (TTH); (2) TTH plus soil compaction (CPT); (3) TTH plus forest floor removal (FFR); and (4) TTH plus CPT + FFR were applied after winter-harvest of a 70-yr-old aspen stand growing on a loamy sand with a site index(age50) of 20.7 m. The CPT treatment significantly increased bulk density and soil strength of the surface 30 cm of soil and neither have recovered during the 5 yr since treatment. The CPT plots had 19.6 thousand (k) suckers ha−1, less than half that of the TTH and FFR treatments; mean diameter (19.4 mm) and height (271 cm) were greatest on the TTH plots. The disturbance treatments (CPT, FFR, and CPT + FFR) each reduced biomass of foliage, stems, and total suckers compared with the TTH treatment. Total aboveground biomass (herbs + shrubs + suckers) was less than half that of TTH plots. There were 5.0 k saplings (suckers >2.5 cm DBH) ha−1 on the TTH plots, but fewer than 1.0 k ha−1 in the other treatments. The disturbance treatments decreased 5-yr growth of potential crop trees, delayed early stand development, and temporarily reduced stockability and site productivity of an aspen ecosystem. Key words: Soil compaction, organic matter removal, site productivity, stand development


2005 ◽  
Vol 35 (8) ◽  
pp. 2045-2055 ◽  
Author(s):  
Richard Kabzems ◽  
Sybille Haeussler

Retaining organic matter and preventing soil compaction are important factors affecting the sustainability of managed forests. To assess how these factors affect short-term ecosystem dynamics, pre-treatment and 1 year and 5 year post-treatment soil properties and post-treatment tree growth responses were examined in a boreal trembling aspen (Populus tremuloides Michx.) dominated ecosystem in northeastern British Columbia, Canada. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash, and forest floor) and three levels of soil compaction (none, intermediate (2-cm impression), heavy (5-cm impression)). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen and white spruce (Picea glauca (Moench) Voss). The compaction treatments had no effect on aspen regeneration density. At year 5, heights of both aspen and white spruce were negatively correlated (r2 > 0.31, p < 0.0001) with upper mineral soil bulk density and were lowest on forest floor removal treatments, where minimal recovery from compaction was observed. There was some evidence for recovery of soil properties to preharvest conditions where expansion of herbaceous vegetation increased soil organic matter.


1999 ◽  
Vol 79 (4) ◽  
pp. 543-550 ◽  
Author(s):  
J. M. Kranabetter ◽  
B. K. Chapman

As part of the long-term soil productivity study in central British Columbia, we examined the effect of soil compaction and organic matter removal on trembling aspen (Populus tremuloides Michx.) litter decomposition. We compared three levels of organic matter removal (stem-only, whole-tree harvest, and scalped mineral soil) and two levels of compaction (no compaction and heavy compaction) in a factorial design replicated as blocks on three sites. Whole-tree harvesting significantly increased litter decomposition rates compared to stem-only (by 36%) and scalped (by 41%) treatments. Soil compaction had inconsistent effects on decomposition rates (k) for forest floor and scalped treatments and, overall, did not significantly affect litter decomposition rates. Litter on scalped plots had higher rates of nutrient translocation than litter on forest floors. We found the treatments altered soil heat sums, so changes in temperatures at the soil surface might be partly responsible for the changes in decomposition rates. We could not detect differences in soil mesofauna populations collected from the litter bags, so treatment effects on fauna probably had less influence than microclimate on decomposition rates. The effects of these early changes in litter decomposition on biological productivity will be part of the ongoing long-term soil productivity study. Key words: Litter decomposition, soil compaction, scalping, whole-tree harvest, nutrient translocation


2015 ◽  
Vol 45 (8) ◽  
pp. 1045-1055 ◽  
Author(s):  
Anya M. Reid ◽  
William K. Chapman ◽  
John Marty Kranabetter ◽  
Cindy E. Prescott

Soil disturbance from organic matter loss and soil compaction can impair site productivity, but less is known about whether these disturbances also affect forest health (defined here as the presence and severity of damaging pests and diseases, mortality, and overall vigour). We used six long-term soil productivity (LTSP) sites in the interior of British Columbia, Canada to test the effects of organic-matter removal and soil compaction on forest health, and to explore the relationship between forest health response and potential indicators of site sensitivity: mineral soil pH, base saturation, carbon to nitrogen ratio (C:N), carbon to phosphorus ratio (C:P), and calcium to aluminum ratio (Ca:Al). Visual forest health surveys were conducted on 5400 15 and 20 year old lodgepole pine (Pinus contorta Dougl. ex Loud.) trees. Soil disturbance treatments significantly affected forest health metrics, but this response typically differed among sites. Principle component analyses indicated the response of healthy trees was negatively related to soil base saturation, the response of dead or dying trees related to soil C:P, and the response of tree disease related to soil Ca:Al, pH, base saturation, and C:N. We found forest health response to soil disturbance varied among sites with relationships between response and soil chemical properties, suggesting a greater vulnerability of pine stands to disease with increasing soil acidity.


2019 ◽  
Vol 49 (7) ◽  
pp. 767-774
Author(s):  
Stefan Zeglen ◽  
Paul J. Courtin

Mechanized treatment for root diseases such as Coniferiporia sulphurascens (Pilát) L. W. Zhou & Y. C. Dai (syn. Phellinus sulphurascens Pilát) and Armillaria ostoyae (Romagn.) Herink (syn. Armillaria solidipes Peck) is often avoided due to cost or the perception that removal of stumps creates detrimental soil disturbance or degradation that hinders site productivity. Our study tested five diseased stands that were treated by extracting stumps following harvesting and replanted with susceptible Douglas-fir. Soil disturbance surveys were conducted in treated and untreated plots, and individual planted spots were assessed and categorized for soil disturbance using existing and proposed new categories specific to disturbance caused by the stump removal. Tree measurements were taken at intervals over the first 10 years of stand development, and foliage was sampled for nutrient analysis. The percentage of total and counted disturbance was 20%–46% and 8%–11% greater, respectively, in treated versus untreated plots; however, mean tree growth in height and diameter was not statistically different between treatments and was more positive for treated plots at all sites but one. Tree nutrition and survival to age 10 was not negatively affected by stump removal. Total site productivity represented by basal area and tree volume differed widely between sites but was not significantly different between treatments.


Pedobiologia ◽  
2004 ◽  
Vol 48 (2) ◽  
pp. 121-128 ◽  
Author(s):  
Robert J Eaton ◽  
Mary Barbercheck ◽  
Marilyn Buford ◽  
William Smith

1971 ◽  
Vol 51 (3) ◽  
pp. 315-322 ◽  
Author(s):  
MATT K. JOHN

Factors affecting removal of P from waste water effluent on 376 soils from British Columbia and six soils from New Zealand were studied. When shaken at a ratio of 1:50 soil to effluent, the soils of the dry British Columbia interior removed on an average 31% of the effluent P, whereas wet coastal soils removed 85% and the New Zealand soils removed 76%. The capacity of the soil to remove effluent P was related mostly to Al, Fe and P extracted by various extractants, pH, base saturation, organic matter and texture.


Sign in / Sign up

Export Citation Format

Share Document