scholarly journals Pan-cancer Analysis of Tumor Mutational Burden and Homologous Recombination DNA Damage Repair Using Targeted Next-Generation Sequencing

Author(s):  
Hai-Yun Wang ◽  
Ling Deng ◽  
Ying-Qing Li ◽  
Xiao Zhang ◽  
Ya-Kang Long ◽  
...  
2020 ◽  
Author(s):  
Hai-Yun Wang ◽  
Ling Deng ◽  
Ying-Qing Li ◽  
Xiao Zhang ◽  
Ya-Kang Long ◽  
...  

Abstract Background: Current variability in methods for tumor mutational burden (TMB) estimation and reporting urges the need for a homogeneous TMB assessment. Here we compared the TMB distributions in different cancer types using two customized targeted panels commonly used in clinical practice. Methods: TMB spectrum of the 295- and 1021-Gene panels in multiple cancer types were compared using targeted next-generation sequencing (NGS). Then the TMB distributions across a diverse cohort of 2,332 cancer cases were investigated for their associations to clinical features. Treatment response data was collected for 222 patients who received immune-checkpoint inhibitors (ICIs) and their homologous recombination DNA damage repair (HR-DDR) and PD-L1 expression were additionally assessed, and compared with TMB and response rate. Results: The median TMB between the gene panels were similar despite wide range in TMB values. Highest TMB was 8 and 10 in patients with squamous cell carcinoma and esophageal carcinoma according to the classification of histopathology and cancer types, respectively. Patients with high TMB and HR-DDR positive status could benefit from ICIs therapies (23 patients versus 7 patients with treatment response, P = 0.004). Additionally, PD-L1 expression was not associated with TMB and treatment response among patients receiving ICIs. Conclusions: Targeted NGS assays demonstrated advantageous ability to evaluate TMB in pan-cancer samples as a tool to predict response to ICIs. Also, TMB integrated with HR-DDR positive status could be a significant biomarker for predicting ICIs response in patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Harsh N. Dongre ◽  
Hilde Haave ◽  
Siren Fromreide ◽  
Fredrik A. Erland ◽  
Svein Erik Emblem Moe ◽  
...  

BackgroundTargeted next-generation sequencing (NGS) is increasingly applied in clinical oncology to advance personalized treatment. Despite success in many other tumour types, use of targeted NGS panels for assisting diagnosis and treatment of head and neck squamous cell carcinomas (HNSCC) is still limited.AimThe focus of this study was to establish a robust NGS panel targeting most frequent cancer mutations in long-term preserved formalin-fixed paraffin-embedded (FFPE) tissue samples of HNSCC from routine diagnostics.Materials and MethodsTumour DNA obtained from archival FFPE tissue blocks of HNSCC patients treated at Haukeland University Hospital between 2003-2016 (n=111) was subjected to mutational analysis using a custom made AmpliSeq Library PLUS panel targeting 31 genes (Illumina). Associations between mutational burden and clinical and pathological parameters were investigated. Mutation and corresponding clinicopathological data from HNSCC were extracted for selected genes from the Cancer Genome Atlas (TCGA) and used for Chi-square and Kaplan-Meier analysis.ResultsThe threshold for sufficient number of reads was attained in 104 (93.7%) cases. Although the specific number of PCR amplified reads detected decreased, the number of NGS-annotated mutations did not significantly change with increased tissue preservation time. In HPV-negative carcinomas, mutations were detected mainly in TP53 (73.3%), FAT1 (26.7%) and FLG (16.7%) whereas in HPV-positive, the common mutations were in FLG (24.3%) FAT1 (17%) and FGFR3 (14.6%) genes. Other less common pathogenic mutations, including well reported SNPs were reproducibly identified. Presence of at least one cancer-specific mutations was found to be positively associated with an extensive desmoplastic stroma (p=0.019), and an aggressive type of invasive front (p=0.035), and negatively associated with the degree of differentiation (p=0.041). Analysis of TCGA data corroborated the association between cancer-specific mutations and tumour differentiation and survival analysis showed that tumours with at least one mutation had shorter disease-free and overall survival (p=0.005).ConclusionsA custom made targeted NGS panel could reliably detect several specific mutations in archival samples of HNSCCs preserved up to 17 years. Using this method novel associations between mutational burden and clinical and pathological parameters were detected and actionable mutations in HPV-positive HNSCC were discovered.


Sign in / Sign up

Export Citation Format

Share Document