scholarly journals Genetically engineered mesenchymal stromal cells in cancer gene therapy

2018 ◽  
Vol 119 (04) ◽  
pp. 221-223 ◽  
Author(s):  
M. Matuskova ◽  
E. Durinikova ◽  
C. Altaner ◽  
L. Kucerova
2008 ◽  
Vol 295 (2) ◽  
pp. F488-F496 ◽  
Author(s):  
Terrence Kucic ◽  
Ian B. Copland ◽  
Jessica Cuerquis ◽  
Daniel L. Coutu ◽  
Lorraine E. Chalifour ◽  
...  

We previously demonstrated that erythropoietin (EPO)-secreting mesenchymal stromal cells (MSC) can be used for the long-term correction of renal failure-induced anemia. The present study provides evidence that coimplantation of insulin-like growth factor I (IGF-I)-overexpressing MSC (MSC-IGF) improves MSC-based gene therapy of anemia by providing paracrine support to EPO-secreting MSC (MSC-EPO) within a subcutaneous implant. IGF-I receptor RNA expression in murine MSC was demonstrated by RT-PCR. Functional protein expression was confirmed by immunoblots and MSC responsiveness to IGF-I stimulation in vitro. IGF-I was also shown to improve MSC survival following staurosporin-induced apoptosis in vitro. A cohort of C57Bl/6 mice was rendered anemic by right kidney electrocoagulation and left nephrectomy. MSC-EPO were subsequently admixed in a bovine collagen matrix and implanted, in combination with MSC-IGF or MSC null, by subcutaneous injection in renal failure mice. In mice receiving MSC-EPO coimplanted with MSC-IGF, hematocrit elevation was greater and enhanced compared with control mice; heart function was also improved. MSC-IGF coimplantation, therefore, represents a promising new strategy for enhancing MSC survival within implanted matrices and for improving cell-based gene therapy of renal anemia.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 913
Author(s):  
Yuan Ding ◽  
Chenyang Wang ◽  
Zhongquan Sun ◽  
Yingsheng Wu ◽  
Wanlu You ◽  
...  

Due to their “tumor homing” and “immune privilege” characteristics, the use of mesenchymal stem cells (MSCs) has been proposed as a novel tool against cancer. MSCs are genetically engineered in vitro and then utilized to deliver tumoricidal agents, including prodrugs and bioactive molecules, to tumors. The genetic modification of MSCs can be achieved by various vectors, and in most cases viral vectors are used; however, viruses may be associated with carcinogenesis and immunogenicity, restricting their clinical translational potential. As such, nonviral vectors have emerged as a potential solution to address these limitations and have gradually attracted increasing attention. In this review, we briefly revisit the current knowledge about MSC-based cancer gene therapy. Then, we summarize the advantages and challenges of nonviral vectors for MSC transfection. Finally, we discuss recent advances in the development of new nonviral vectors, which have provided promising strategies to overcome obstacles in the gene modulation of MSCs.


2002 ◽  
Author(s):  
Paula M. Pitha-Rowe ◽  
Lesia Dropulic ◽  
Boro Dropulic

Sign in / Sign up

Export Citation Format

Share Document