Survival role of superoxide dismutase 1 on human granulosa luteinized cells in vitroSurvival role of superoxide dismutase 1 on human granulosa luteinized cells in vitro

2011 ◽  
Vol 45 (04) ◽  
pp. 175-181
Author(s):  
J. Dineva ◽  
I. Vangelov ◽  
R. Abrashev ◽  
K. Todorova ◽  
D. Gulenova ◽  
...  
2013 ◽  
Vol 24 (1) ◽  
pp. 1-9 ◽  
Author(s):  
D. Bjerre ◽  
L. B. Madsen ◽  
T. Mark ◽  
S. Cirera ◽  
K. Larsen ◽  
...  

2018 ◽  
Vol 59 (3) ◽  
pp. 1675 ◽  
Author(s):  
Takashi Kojima ◽  
Cem Simsek ◽  
Ayako Igarashi ◽  
Kazue Aoki ◽  
Kazunari Higa ◽  
...  

2014 ◽  
Vol 289 (44) ◽  
pp. 30690-30701 ◽  
Author(s):  
Fernando R. Coelho ◽  
Asif Iqbal ◽  
Edlaine Linares ◽  
Daniel F. Silva ◽  
Filipe S. Lima ◽  
...  

The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1WT and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp32 residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp32 residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1WT and hSOD1G93A mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp32 residue in the process. The results showed that Trp32 residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp32 residue (bovine SOD1 and hSOD1W32F mutant). The results support a role for the oxidation products of the hSOD1-Trp32 residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1.


1989 ◽  
Vol 257 (1) ◽  
pp. 277-280 ◽  
Author(s):  
S Shaw ◽  
E Jayatilleke ◽  
V Herbert ◽  
N Colman

Although folate deficiency and increased requirements for folate are observed in most alcoholics, the possibility that acetaldehyde generated from ethanol metabolism may increase folate catabolism has not been previously demonstrated. Folate cleavage was studied in vitro during the metabolism of acetaldehyde by xanthine oxidase, measured as the production of p-aminobenzoylglutamate from folate using h.p.l.c. Acetaldehyde/xanthine oxidase generated superoxide, which cleaved folates (5-methyltetrahydrofolate greater than folinic acid greater than folate) and was inhibited by superoxide dismutase. Cleavage was increased by addition of ferritin and inhibited by desferrioxamine (a tight chelator of iron), suggesting the importance of catalytic iron. Superoxide generated from the metabolism of ethanol to acetaldehyde in the presence of xanthine oxidase in vivo may contribute to the severity of folate deficiency in the alcoholic.


Biochemistry ◽  
2004 ◽  
Vol 43 (17) ◽  
pp. 4899-4905 ◽  
Author(s):  
Soumya S. Ray ◽  
Richard J. Nowak ◽  
Konstantin Strokovich ◽  
Robert H. Brown ◽  
Thomas Walz ◽  
...  

Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1816-1822 ◽  
Author(s):  
Samuele Peppoloni ◽  
Brunella Posteraro ◽  
Bruna Colombari ◽  
Lidia Manca ◽  
Axel Hartke ◽  
...  

Enterococcus faecalis is a significant human pathogen worldwide and is responsible for severe nosocomial and community-acquired infections. Although enterococcal meningitis is rare, mortality is considerable, reaching 21 %. Nevertheless, the pathogenetic mechanisms of this infection remain poorly understood, even though the ability of E. faecalis to avoid or survive phagocytic attack in vivo may be very important during the infection process. We previously showed that the manganese-cofactored superoxide dismutase (MnSOD) SodA of E. faecalis was implicated in oxidative stress responses and, interestingly, in the survival within mouse peritoneal macrophages using an in vivo–in vitro infection model. In the present study, we investigated the role of MnSOD in the interaction of E. faecalis with microglia, the brain-resident macrophages. By using an in vitro infection model, murine microglial cells were challenged in parallel with the wild-type strain JH2-2 and its isogenic sodA deletion mutant. While both strains were phagocytosed by microglia efficiently and to a similar extent, the ΔsodA mutant was found to be significantly more susceptible to microglial killing than JH2-2, as assessed by the antimicrobial protection assay. In addition, a significantly higher percentage of acidic ΔsodA-containing phagosomes was found and these also underwent enhanced maturation as determined by the expression of endolysosomal markers. In conclusion, these results show that the MnSOD of E. faecalis contributes to survival of the bacterium in microglial cells by influencing their antimicrobial activity, and this could even be important for intracellular killing in neutrophils and thus for E. faecalis pathogenesis.


1998 ◽  
Vol 42 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Jian-Ying Wang ◽  
Richard M. Burger ◽  
Karl Drlica

ABSTRACT Isoniazid (INH) activation in vitro is associated with reduction of the mycobacterial ferric KatG catalase-peroxidase by hydrazine and reaction with O2 to form an oxyferrous enzyme complex. Since this complex could also form directly via reaction of ferric KatG with superoxide, intracellular activation might be responsive to superoxide concentration. When Mycobacterium smegmatiscarrying the M. bovis katG gene was treated with nontoxic levels of plumbagin, a generator of superoxide, the bacteriostatic activity of INH increased unless a plasmid-borne superoxide dismutase gene was also present. Thus, endogenous superoxide probably contributes to intracellular activation of INH.


Sign in / Sign up

Export Citation Format

Share Document