On Countably Paracompact Spaces

1951 ◽  
Vol 3 ◽  
pp. 219-224 ◽  
Author(s):  
C. H. Dowker

Let X be a topological space, that is, a space with open sets such that the union of any collection of open sets is open and the intersection of any finite number of open sets is open. A covering of X is a collection of open sets whose union is X. The covering is called countable if it consists of a countable collection of open sets or finite if it consists of a finite collection of open sets ; it is called locally finite if every point of X is contained in some open set which meets only a finite number of sets of the covering. A covering is called a refinement of a covering U if every open set of X is contained in some open set of . The space X is called countably paracompact if every countable covering has a locally finite refinement.

1997 ◽  
Vol 20 (3) ◽  
pp. 433-442 ◽  
Author(s):  
T. R. Hamlett ◽  
David Rose ◽  
Dragan Janković

An ideal on a setXis a nonempty collection of subsets ofXclosed under the operations of subset and finite union. Given a topological spaceXand an idealℐof subsets ofX,Xis defined to beℐ-paracompact if every open cover of the space admits a locally finite open refinement which is a cover for all ofXexcept for a set inℐ. Basic results are investigated, particularly with regard to theℐ- paracompactness of two associated topologies generated by sets of the formU−IwhereUis open andI∈ℐand⋃{U|Uis open andU−A∈ℐ, for some open setA}. Preservation ofℐ-paracompactness by functions, subsets, and products is investigated. Important special cases ofℐ-paracompact spaces are the usual paracompact spaces and the almost paracompact spaces of Singal and Arya [“On m-paracompact spaces”, Math. Ann., 181 (1969), 119-133].


1961 ◽  
Vol 2 (2) ◽  
pp. 147-150
Author(s):  
Shuen Yuan

A topological space is paracompact if and only if each open cover of the space has an open locally finite refinement. It is well-known that an unusual normality condition is satisfied by each paracompact regular space X [p. 158, 5]: Let α be a locally finite (discrete) family of subsets of X, then there is a neighborhood V of the diagonal Δ(X) (in X × X), such that V[x] intersects at most a finite number of members (respectively at most one member) of {V[A]: A ∈ α} for each x ∈ X. In this not we will show that a variant of this condition actually characterizes paracompactness. Among other results, an improvement to a recent result of H. H.Corson [2] is given so as to accord with a conjecture of J. L. Kelley [p. 208, 5] more prettily, and we connect paracompactness to metacompactness [1]


2020 ◽  
Vol 25 (2) ◽  
pp. 67-77 ◽  
Author(s):  
Raad Al-Abdulla ◽  
Salam Jabar

    Throughout this paper by a space we mean a supra topological space, we have studied some of propertiese to new set is called supra generalize- cocompact open set ( -g-coc-open set)and find the relation with other sets and our concluded anew class of the function called -g-coc-continuous, -g-coc'-continuous, -coc-continuous, -coc'-continuous We shall provided some properties of these concepts and it will explain the relationship among them and some results on this subjects are proved Throughout this work , and new concept have been illustrated including , -coc-ompact space .


2019 ◽  
Vol 12 (2) ◽  
pp. 358-369
Author(s):  
Layth Muhsin Habeeb Alabdulsada
Keyword(s):  

The aim of this paper is to introduce and study $\mathcal{B}$-open sets and related properties. Also, we define a bi-operator topological space $(X, \tau, T_1, T_2)$, involving the two operators $T_1$ and $T_2$, which are used to define $\mathcal{B}$-open sets. A $\mathcal{B}$-open set is, roughly speaking, a generalization of a $b$-open set, which is, in turn, a generalization of a pre-open set and a semi-open set. We introduce a number of concepts based on $\mathcal{B}$-open sets.


1973 ◽  
Vol 25 (4) ◽  
pp. 706-711
Author(s):  
Henry Potoczny

In this paper, we extend the class of spaces to which the Σ and β theorems of Hodel apply, as well as the sum and subset theorems of [2]. Instead of the open cover definition of countable paracompactness, we utilize an equivalent formulation of countable paracompactness, due to Ishikawa [3].


1970 ◽  
Vol 22 (5) ◽  
pp. 984-993 ◽  
Author(s):  
H. L. Shapiro

The concept of extending to a topological space X a continuous pseudometric defined on a subspace S of X has been shown to be very useful. This problem was first studied by Hausdorff for the metric case in 1930 [9]. Hausdorff showed that a continuous metric on a closed subset of a metric space can be extended to a continuous metric on the whole space. Bing [4] and Arens [3] rediscovered this result independently. Recently, Shapiro [15] and Alo and Shapiro [1] studied various embeddings. It has been shown that extending pseudometrics can be characterized in terms of extending refinements of various types of open covers. In this paper we continue our study of extending pseudometrics. First we show that extending pseudometrics can be characterized in terms of σ-locally finite and σ-discrete covers. We then investigate when can certain types of covers be extended.


1976 ◽  
Vol 19 (1) ◽  
pp. 117-119
Author(s):  
H. L. Shapiro ◽  
F. A. Smith

Recently there has been a great deal of interest in extending refinements of locally finite and point finite collections on subsets of certain topological spaces. In particular the first named author showed that a subset S of a topological space X is P-embedded in X if and only if every locally finite cozero-set cover on S has a refinement that can be extended to a locally finite cozero-set cover of X. Since then many authors have studied similar types of embeddings (see [1], [2], [3], [4], [6], [8], [9], [10], [11], and [12]). Since the above characterization of P-embedding is equivalent to extending continuous pseudometrics from the subspace S up to the whole space X, it is natural to wonder when can a locally finite or a point finite open or cozero-set cover on S be extended to a locally finite or point-finite open or cozero-set cover on X.


Author(s):  
V. V. Mykhaylyuk

A connection between the separability and the countable chain condition of spaces withL-property (a topological spaceXhasL-property if for every topological spaceY, separately continuous functionf:X×Y→ℝand open setI⊆ℝ,the setf−1(I)is anFσ-set) is studied. We show that every completely regular Baire space with theL-property and the countable chain condition is separable and constructs a nonseparable completely regular space with theL-property and the countable chain condition. This gives a negative answer to a question of M. Burke.


1961 ◽  
Vol 12 (3) ◽  
pp. 149-158 ◽  
Author(s):  
D. J. Simms

Let be a covering of a topological space X and ℱ a sheaf of abelian groups over X. By a well known result of Leray, (3) II theorems 5.2.4. and 5.4.1., if is open, or closed and locally finite, there exists a spectral sequence {Er} satisfying isomorphisms and for some filtration of the graded group H*(X, ℱ). ℋq(ℱ) denotes the system of coefficients over : s→Hq(| s |, ℱ).


Author(s):  
Hamid Reza Moradi

A nonzero fuzzy open set () of a fuzzy topological space is said to be fuzzy minimal open (resp. fuzzy maximal open) set if any fuzzy open set which is contained (resp. contains) in is either or itself (resp. either or itself). In this note, a new class of sets called fuzzy minimal open sets and fuzzy maximal open sets in fuzzy topological spaces are introduced and studied which are subclasses of open sets. Some basic properties and characterization theorems are also to be investigated.


Sign in / Sign up

Export Citation Format

Share Document