A Remark on Flat and Projective Modules

1966 ◽  
Vol 18 ◽  
pp. 943-949 ◽  
Author(s):  
Chr. U. Jensen

It is the purpose of this note to give some characterizations of flat and projective modules, partly in ideal theoretical terms, partly in terms of the exterior product of a module (“puissance extérieure“); cf. (1).We shall consider left modules over a ring R with identity element and without proper zero divisors. The left module M is called flat if X ⊗R M is an exact functor on the category of right R-modules X. If M is flat over a commutative domain R, M is necessarily torsion-free. Therefore when looking for flatness of a module M over a commutative domain, one may assume from the start that M is torsion-free.In the following theorem, we shall not restrict ourselves to commutative rings R, but the modules concerned have to be torsion-free, which, of course, should mean that rm = 0 implies r = 0 or m = 0.

Author(s):  
D. D. Anderson ◽  
Ranthony A. C. Edmonds

Given a certain factorization property of a ring [Formula: see text], we can ask if this property extends to the polynomial ring over [Formula: see text] or vice versa. For example, it is well known that [Formula: see text] is a unique factorization domain if and only if [Formula: see text] is a unique factorization domain. If [Formula: see text] is not a domain, this is no longer true. In this paper, we survey unique factorization in commutative rings with zero divisors, and characterize when a polynomial ring over an arbitrary commutative ring has unique factorization.


Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).


2018 ◽  
Vol 17 (07) ◽  
pp. 1850121
Author(s):  
K. Selvakumar ◽  
M. Subajini ◽  
M. J. Nikmehr

Let [Formula: see text] be a commutative ring with identity and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus of [Formula: see text] is two.


2012 ◽  
Vol 55 (1) ◽  
pp. 127-137 ◽  
Author(s):  
John D. LaGrange

AbstractThe zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.


1984 ◽  
Vol 25 (2) ◽  
pp. 219-227 ◽  
Author(s):  
J. Ahsan ◽  
E. Enochs

Throughout this paper it is assumed that rings are associative, have the identity element, and all modules are left unital. R will denote a ring with identity, R-Mod the category of left R-modules, and for each left R-module M, E(M) (resp. J(M)) will represent the injective hull (resp. Jacobson radical) of M. Also, for a module M, A ⊆' M will mean that A is an essential submodule of M, and Z(M) denotes the singular submodule of M. M is called singular if Z(M) = M, and it is called non-singular in case Z(M) = 0. For fundamental definitions and results related to torsion theories, we refer to [12] and [14]. In this paper we shall deal mainly with Goldie torsion theory. Recall that a pair (G, F) of classes of left R-modules is known as Goldie torsion theory if G is the smallest torsion class containing all modules B/A, where A ⊆' B, and the torsion free class F is precisely the class of non-singular modules.


2012 ◽  
Vol 1 (2) ◽  
pp. 191-194
Author(s):  
M. Filipowicz ◽  
M. Kȩpczyk

2011 ◽  
Vol 10 (02) ◽  
pp. 335-356 ◽  
Author(s):  
DAVID E. DOBBS ◽  
JAY SHAPIRO

Results of Davis on normal pairs (R, T) of domains are generalized to (commutative) rings with nontrivial zero-divisors, particularly complemented rings. For instance, if T is a ring extension of an almost quasilocal complemented ring R, then (R, T) is a normal pair if and only if there is a prime ideal P of R such that T = R[P], R/P is a valuation domain and PT = P. Examples include sufficient conditions for the "normal pair" property to be stable under formation of infinite products and ⋈ constructions.


2020 ◽  
Vol 12 (1) ◽  
pp. 84-101 ◽  
Author(s):  
S. Pirzada ◽  
M. Aijaz

AbstractLet R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that {\rm{R}} \cong \Pi {\rm\mathbb{Z}}_2^{\rm{n}}, n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.


1973 ◽  
Vol 25 (5) ◽  
pp. 1002-1005
Author(s):  
Thomas Cheatham

In [4, Theorem 4.1, p. 45], Enochs characterizes the integral domains with the property that the direct product of any family of torsion-free covers is a torsion-free cover. In a setting which includes integral domains as a special case, we consider the corresponding question for direct sums. We use the notion of torsion introduced by Goldie [5]. Among commutative rings, we show that the property “any direct sum of torsion-free covers is a torsion-free cover“ characterizes the semi-simple Artinian rings.


Sign in / Sign up

Export Citation Format

Share Document