On Multiple Integral Geometric Integrals and Their Applications to Probability Theory

1970 ◽  
Vol 22 (1) ◽  
pp. 151-163 ◽  
Author(s):  
Franz Streit

It has been pointed out repeatedly in the literature that the methods of integral geometry (a mathematical theory founded by Wilhelm Blaschke and considerably extended by several mathematicians) provide highly suitable means for the solution of problems concerning “geometrical probabilities“ [2; 6; 12; 15]. The possibilities for the application of these integral geometric results to the evaluation of probabilities, satisfying certain conditions of invariance with respect to a group of transformations which acts on the probability space, are obviously not yet exhausted. In this article, such applications are presented. First, some concepts and notation are introduced (§1). In the next section we derive some integral geometric relations (§ 2). These results are generalizations of known systems of formulae and they are valid in the k-dimensional Euclidean space. In § 3, we determine mean-value formulae for the fundamental characteristics of point-sets, generated by randomly placed convex bodies.

Author(s):  
J. F. C. Kingman

1. A type of problem which frequently occurs in probability theory and statistics can be formulated in the following way. We are given real-valued functions f(x), gi(x) (i = 1, 2, …, k) on a space (typically finite-dimensional Euclidean space). Then the problem is to set bounds for Ef(X), where X is a random variable taking values in , about which all we know is the values of Egi(X). For example, we might wish to set bounds for P(X > a), where X is a real random variable with some of its moments given.


2009 ◽  
Vol 52 (3) ◽  
pp. 361-365 ◽  
Author(s):  
Fejes Tóth Gábor

AbstractA classical theorem of Rogers states that for any convex body K in n-dimensional Euclidean space there exists a covering of the space by translates of K with density not exceeding n log n + n log log n + 5n. Rogers’ theorem does not say anything about the structure of such a covering. We show that for sufficiently large values of n the same bound can be attained by a covering which is the union of O(log n) translates of a lattice arrangement of K.


Author(s):  
R. A. Rankin

I write X for the point (x1, x2, …, xn) of n-dimensional Euclidean space Rn. The coordinates x1, x2, …, xn are real numbers. The origin (0, 0,…, 0) is denoted by O. If t is a real number, tX denotes the point (tx1, tx2, …, txn); in particular, − X is the point (−x1, −x2,…, −xn). Also X + Y denotes the point {x1 + y1, x2 + y2, …, xn + yn).


1970 ◽  
Vol 11 (4) ◽  
pp. 385-394 ◽  
Author(s):  
P. W. Aitchison

The ellipsoid is characterised among all convex bodies in n-dimensional Euclidean space, Rn, by many different properties. In this paper we give a characterisation which generalizes a number of previous results mentioned in [2], p. 142. The major result will be used, in a paper yet to be published, to prove some results concerning generalizations of the Minkowski theory of reduction of positive definite quadratic forms.


2011 ◽  
Vol 43 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and a dimension k ∈ {1, …, d}, we investigate the typical k-face and the weighted typical k-face (weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The case k = d concerns the previously studied typical cell and zero cell, respectively. For k < d, we first find the conditional distribution of the typical k-face or weighted typical k-face, given its direction. Then we investigate how the shapes of the faces are influenced by assumptions of different types: either via containment of convex bodies of given volume (including a new result for k = d), or, for weighted typical k-faces, in the spirit of D. G. Kendall's asymptotic problem, suitably generalized. In all these results on typical or weighted typical k-faces with given direction space L, the Blaschke body of the section process of the underlying hyperplane process with L plays a crucial role.


1962 ◽  
Vol 58 (2) ◽  
pp. 217-220 ◽  
Author(s):  
E. Asplund ◽  
E. Grosswald ◽  
B. Grünbaum

In the present note we discuss some properties of a ‘measure of asymmetry’ of convex bodies in n-dimensional Euclidean space. Various measures of asymmetry have been treated in the literature (see, for example, (1), (6); references to most of the relevant results may be found in (4)). The measure introduced here has the somewhat surprising property that for n ≥ 3 the n-simplex is not the most asymmetric convex body in En. It seems to be the only measure of asymmetry for which this fact is known.


1959 ◽  
Vol 11 ◽  
pp. 256-261 ◽  
Author(s):  
A. C. Woods

We select a Cartesian co-ordinate system in ndimensional Euclidean space Rn with origin 0 and employ the usual pointvector notation.By a lattice Λ in Rn we mean the set of all rational integral combinations of n linearly independent points X1, X2, … , Xn of Rn. The points X1 X2, … , Xn are said to form a basis of Λ. Let {X1, X2, … , Xn) denote the determinant formed when the co-ordinates of Xi are taken in order as the ith row of the determinant for i = 1,2, … , n. The absolute value of this determinant is called the determinant d(Λ) of Λ. It is well known that d(Λ) is independent of the particular basis one takes for Λ.A star body in Rn is a closed set of points K such that if X ∈ K then every point of the form tX where — 1 < t < 1 is an inner point of K.


1999 ◽  
Vol 8 (1-2) ◽  
pp. 109-129 ◽  
Author(s):  
HANS-GEORG CARSTENS ◽  
WALTER A. DEUBER ◽  
WOLFGANG THUMSER ◽  
ELKE KOPPENRADE

We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dimensional Euclidean space we obtain bounds for the wobbling distance for rotations, shearings and stretchings that are close to optimal. Our methods also allow us to analyse the discrepancy of certain billiards. Finally, we take a look at paradoxical situations and exhibit recursive point sets that are wobbling equivalent, but not recursively so.


1958 ◽  
Vol 13 ◽  
pp. 53-61 ◽  
Author(s):  
Takeyuki Hida

Let X(A, ω), ω∈Ω, be Wiener process on the probability space (Ω, B, P) depending on a point A of an N dimensional Euclidean space EN.


2011 ◽  
Vol 43 (02) ◽  
pp. 308-321 ◽  
Author(s):  
Daniel Hug ◽  
Rolf Schneider

For stationary Poisson hyperplane tessellations in d-dimensional Euclidean space and a dimension k ∈ {1, …, d}, we investigate the typical k-face and the weighted typical k-face (weighted by k-dimensional volume), without isotropy assumptions on the tessellation. The case k = d concerns the previously studied typical cell and zero cell, respectively. For k &lt; d, we first find the conditional distribution of the typical k-face or weighted typical k-face, given its direction. Then we investigate how the shapes of the faces are influenced by assumptions of different types: either via containment of convex bodies of given volume (including a new result for k = d), or, for weighted typical k-faces, in the spirit of D. G. Kendall's asymptotic problem, suitably generalized. In all these results on typical or weighted typical k-faces with given direction space L, the Blaschke body of the section process of the underlying hyperplane process with L plays a crucial role.


Sign in / Sign up

Export Citation Format

Share Document