Geometrical Bijections in Discrete Lattices

1999 ◽  
Vol 8 (1-2) ◽  
pp. 109-129 ◽  
Author(s):  
HANS-GEORG CARSTENS ◽  
WALTER A. DEUBER ◽  
WOLFGANG THUMSER ◽  
ELKE KOPPENRADE

We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dimensional Euclidean space we obtain bounds for the wobbling distance for rotations, shearings and stretchings that are close to optimal. Our methods also allow us to analyse the discrepancy of certain billiards. Finally, we take a look at paradoxical situations and exhibit recursive point sets that are wobbling equivalent, but not recursively so.

1970 ◽  
Vol 22 (1) ◽  
pp. 151-163 ◽  
Author(s):  
Franz Streit

It has been pointed out repeatedly in the literature that the methods of integral geometry (a mathematical theory founded by Wilhelm Blaschke and considerably extended by several mathematicians) provide highly suitable means for the solution of problems concerning “geometrical probabilities“ [2; 6; 12; 15]. The possibilities for the application of these integral geometric results to the evaluation of probabilities, satisfying certain conditions of invariance with respect to a group of transformations which acts on the probability space, are obviously not yet exhausted. In this article, such applications are presented. First, some concepts and notation are introduced (§1). In the next section we derive some integral geometric relations (§ 2). These results are generalizations of known systems of formulae and they are valid in the k-dimensional Euclidean space. In § 3, we determine mean-value formulae for the fundamental characteristics of point-sets, generated by randomly placed convex bodies.


1953 ◽  
Vol 49 (1) ◽  
pp. 156-157 ◽  
Author(s):  
D. B. Sawyer

Let R be a set of points in n-dimensional Euclidean space, and let Δ′(R) denote the lower bound of the determinants of non-homogeneous lattices which have no point in R. For Δ′(R) to be non-zero it is necessary, as Macbeath has shown (2), that R should have infinite volume.


1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.


Author(s):  
A. P. Stone

ABSTRACTGeneral shift operators for angular momentum are obtained and applied to find closed expressions for some Wigner coefficients occurring in a transformation between two equivalent representations of the four-dimensional rotation group. The transformation gives rise to analytical relations between hyperspherical harmonics in a four-dimensional Euclidean space.


Author(s):  
J. F. C. Kingman

1. A type of problem which frequently occurs in probability theory and statistics can be formulated in the following way. We are given real-valued functions f(x), gi(x) (i = 1, 2, …, k) on a space (typically finite-dimensional Euclidean space). Then the problem is to set bounds for Ef(X), where X is a random variable taking values in , about which all we know is the values of Egi(X). For example, we might wish to set bounds for P(X > a), where X is a real random variable with some of its moments given.


SIMULATION ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 145-149 ◽  
Author(s):  
John Rees Jones

2014 ◽  
Vol 46 (3) ◽  
pp. 622-642 ◽  
Author(s):  
Julia Hörrmann ◽  
Daniel Hug

We study a parametric class of isotropic but not necessarily stationary Poisson hyperplane tessellations in n-dimensional Euclidean space. Our focus is on the volume of the zero cell, i.e. the cell containing the origin. As a main result, we obtain an explicit formula for the variance of the volume of the zero cell in arbitrary dimensions. From this formula we deduce the asymptotic behaviour of the volume of the zero cell as the dimension goes to ∞.


Sign in / Sign up

Export Citation Format

Share Document